6 Differential Forms and their Integration

2021-22

6.1 Differential 1-forms

With no motivation (see Appendix) we go straight to the definitions.

Definition 1 The set of all linear maps R™ — R, Hom (R™, R), is called the
dual space of R".

The following is a definition of functions whose values are functions!

Definition 2 A differential form of degree 1 on an open set U C R",

also known as a 1-form, is a function
w: U — Hom (R", R).

It is usual to write w, and not w (a). So, if a € U, then w, : R — R is

a linear function.

Example 3 If the scalar-valued function f : U — R, is Fréchet differen-
tiable on U, an open subset of R™, then the derivative gives a 1-form, df, the
differential of f.

Solution Given a € U, the Fréchet derivative df, is not a 1-form but it is a

linear function R™ — R and we can define the function
df : U — Hom (R", R),a > dfa,

which is an example of a 1-form. |

Not all 1-forms arise from differentiating a function. Exactly which 1-forms

do come from differentiating functions is a question studied later.

Studying first Hom (R™, R) , we recall a special subset of linear functions;
the projection functions p’ : R” — R which satisfy p'(x) = 2%, for 1 <i<n.

These are important.



Lemma 4 The projection functions {p' : 1 <1 < n} form a basis for Hom (R", R).

Proof let L € Hom (R",R) be a linear function from R” to R and x € R".
Then

L(x)=L (Z xe) = inL(ei) = Z Pi(x) L(e;) = (Z L(e;) pi> (x).

True for all x € R™ implies the equality of functions
L= Lle)p' (1)
i=1

Thus the set of projection functions form a Spanning Set for Hom (R", R).
It is easily shown (see the Appendix) that the p’ are linearly independent.
Hence {p’ : 1 <i < n} is a basis for Hom (R, R). |

This means that Hom (R™, R) is a vector space of dimension n.

Next, studying functions U — Hom (R", R) we noted above that Fréchet
derivatives are 1-forms. Recall from Chapter 2 that if L : R" — R is a linear
function then dL, = L for all a € R™. The projection functions are linear

hence dp’, = p for all a € R™. In fact, a different notation is used,

Definition 5 For each 1 < i < n define the constant 1-form dz’ on R"

by
dz'(a) =p

for all a € R™.

Aside, it has already been noted that some authors use z* in place of p’,
which leads to x%(x) = . It may be confusing to use x’ for both a function
and a coordinate of a vector, but it would explain using dz’(a) in place of
dp’,. You might also have thought that we should write dz’ but it is accepted
convention to write dz’(a). Don’t blame the lecturer for the illogical notation.
It’s historic.

End of Aside.



Let w : U — Hom (R", R) be a 1-form. Let a € U so w, : R — R is a
linear function. Then by (1),

Wy = Zwa(ei)pi.
i=1
Yet p' = dz'(b) for any b € U. So we choose b = a, in which case
wa =Y wale;)dr'(a). (2)
i=1
Definition 6 Let w : U — Hom (R", R) be a 1-form. Define functions

w; U =R by wi(a) =wa(e;) for 1 <i<n.

With this notation (2) becomes

W, = Zwi (a)dr'(a) = (Z widxi> (a). (3)

True for all a € U implies the equality of functions
w= Z w;da’. (4)
i=1

Thus every 1-form can be written as a linear combination of the constant

1-forms dz* with coefficients functions w; : U — R. That is {da'},_,., form
a spanning set for 1-forms. Since the {p'}, ..., are linearly independent then

so are the dz' which thus form a basis for the 1-forms.

Example 7
w = 2?ydz + (sinz) dy

is a 1-form on R2. Find wa(t) fora= (2,3)" and t = (—4,5)".
Solution By (3), if w =Y | w;dz’, then
Wy = Zwi(a) dr'(a) = Zwi(a) P
i=1 i=1
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In our case,
wi(x) = 2%y and wy(x) =sinz
so, since a = (2,3)", we have w;(a) = 12 and wy(a) = sin 2. Thus
wa = 12dx(a) + (sin 2) dy(a) = 12p' + (sin 2) p*.
Given t = (—4,5)" € R? then

wa(t) = 12p' < (_54)> + (sin2) p? ( (_54)> — —48 4 5sin 2.

Example 8 If f : U CR" = R, U an open subset, is Fréchet differentiable
then df s a 1-form and

df =) ol
=1

Solution We have already noted in Example 3 that df is a 1-form. In the
notation of (2) we have, for any a € U,

dfa= dfale;)dz'(a).

Yet we have seen that a Fréchet derivative evaluated on a direction equals

the directional derivative, so

of
dfa(ei) - dez'f(a> - dzf(a) = ) Z(a) :
x
Hence .
dfa = 2 8851 (a)dz'(a).
True for all a € U means we have an equality of functions,
df = ——dz". 5
f Z ol (5)
|

This is, perhaps, reminiscent of the chain rule but now the objects have

a new interpretation in terms of 1-forms.

As an application, this gives us an alternative way of writing the Fréchet

derivatives of the product and quotient functions seen in an earlier chapter.
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Example 9 The differential of the product function p : R?* — R, p(x) = zy

5

Ip dp
P = gp0%+ 5, W = yde +ady (6)
The differential of the quotient function ¢ : R x RT — R, q(x) = x/y is
dq dq 1 x
dqg = —dxr + —dy = —dr — —dy.
4= gpdet g dy = dr— 5y

We have seen that Fréchet derivatives are 1-forms; are all 1-forms the

differential of some Fréchet differentiable function?

Example 10 Show that the 1-form xydx + ydy is not the differential of any
Fréchet differentiable function.

Solution Assume otherwise, so there exists a Fréchet differentiable function
f such that

0 0
df = xydx + ydy that is, —fdx + —fdy = zydx + ydy.
ox dy
Equate coefficients of the constant 1-forms, so
of of
= = d —=uy. 7
e~ Wy and 5=y (7)
Integrate the first to get
%y
fx) == +9(y), (8)
for some function g(y). Differentiate this w.r.t. y when we get
of ¥
w2 +4'(y).
But from (7) we have df /0y = y so we can equate to get
2
x
y=—5+9)
Integrate w.r.t. y to get
2 2
Y x
e 3y+g(y)+0, (9)

for some constant C'. Combine (8) and (9) as f(x) = y?/2—C. Yet this does
not satisfy df/0xr = xy seen in (7). Hence no such f exists. [
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A conclusion of this is that not all 1-forms are differentials of Fréchet

differentiable functions. But if they are they are given a special name,

Definition 11 A 1-formw : U C R™ — Hom (R™, R) is exact if there ezists
a Ct-function f : U C R® — R such that w = df.

Why demand a C!-function and not a Fréchet differentiable function?
One reason is that later we prove a result which states that, under some
conditions, a given form is ‘not the differential of a C'-function’. Under
Definition 11 this conclusion becomes ‘the form is not exact’. Some authors
demand that f is a C*-function, i.e. all derivatives of all orders exist and

are continuous. Such functions are called smooth.

6.1.1 Second derivatives

Definition 12 Let f : U C R® — R, be scalar-valued and Fréchet differ-
entiable on U. If 0f/0x" : U — R has a j-th partial derivative, i.e. is
differentiable w.r.t. 7, then this is written

of ( af ) 0% f

927 \ 0w ) ~ Bwiow U T

When j =1 this can be written as

o0 f

These are all called the partial derivatives of f of order 2.

Similarly, we can define partial derivatives of order q for any g > 1 by
induction on q (when they exist):

9] oLy o1f
Oxla (8xiq—1...8xi28xi1) U R

© Qziadgia-t ... Qxi2Qxi

Definition 13 If all of the q-th order partial derivatives of a function f :
U — R where U is open in R™ exist and are continuous on U, then we say

that f is a function of class C?, or a C? - function.

This continues the earlier definition of C' as the functions whose partial

derivatives exist and are continuous; C° is the set of continuous functions.



Definition 14 A 1-form w is of class C¢ if its components w; are functions
of class C1.

Note If w = df then w; = df/0x". In this case the form w is of class C7 if

and only if the function f is of class C7™!.

An important result is that if all the derivatives of order 2 of f are con-

tinuous, i.e. if f is of class C?, then the order of differentiation is immaterial.

Theorem 15 If a function f: U — R where U is open in R™ is of class C*

then
0*f B 0*f
Oridrt  Oxidxd

for all i and j.

Proof Given a € U then, since U is an open set, there exists a § > 0 such
that the open ball Bs(a) centred at a lies within U. Suppose 1 < i,5 < n
with i # j. Then, for 0 < [t| < 0, define

A(t) = fla+te;+te)— flat+te;) — fla+te)+ f(a)
— 0(t)-0(0),

where
0(s) = f(a+ se; +te;) — f(a+ se;),

for s between 0 and ¢. (Remember, I never said ¢ was positive!).

The function 6 is continuous (since f is continuous) and differentiable. In
fact,

: of of
0 (S) = %(a—k s€e; + tez) — %(a—i— Sej> .

(See the Appendix for more details on this step.) Hence by the Mean Value
Theorem for real valued functions of one variable there exists s; between 0
and ¢ such that 6(t) — 6(0) = 6'(s1) (t — 0). Dividing through by ¢ and we

have

A(t) 0(t)—6(0) of

t t _axa‘(
= ¢()—¢(0)

a—+ 51€; + tez) — (a + Slej)
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where

o(s) = %(a + s1e; + se;)

for s between 0 and ¢. The function ¢ is continuous (since df /07 is contin-

uous) and differentiable. In fact,

o (0 02
¢ (s) = e <8_gfj(a + s1€j + sei)) = 8xiéij (a+ siej + se;)

Hence by the Mean Value Theorem for real valued functions of one variable
there exists s, between 0 and t such that ¢ (t) — ¢ (0) = ¢'(s2) (t —0).
Dividing by ¢ again,

A(t)  o(t)—o(0)  Of
12 t - Oxioxd

(a+ sie; + sq€;) .

As t — 0 we also have s; and s, — 0 since they are both ‘stuck between’ 0
and ¢. Thus

SAWD
150 12 N silino 0zt 0zI
so—0

(a + 51€; + Sgei)

0? .

so—0

since 0° f /0z'0z7 is continuous,

_Of
= Frow @)

Since we can rearrange A (1) as
A(t) = fla+te;+te;) — fla+te;) — f(a+te;)+ f(a)
= fla+te;+te;) — fla+te)— fla+te;) + f(a)
swapping f(a + te;) and f(a + te;)

= fl(a+te, +te;) — fla+te) — f(a+te;)+ f(a),



swapping te; and te; within the first term, we can reverse the roles of i and
J in the above argument. The same argument then gives

limA(t> _ O (a).

t=0 2 Qaidri

Hence result follows. [ |

Remark There are examples of twice differentiable functions f : R?> — R
for which 92 f /0x'0x? # 0%f/0x70x'. See Appendix.

Our promised property of exactness is

Theorem 16 If a 1-form w : U C R" — Hom (R™, R) is a form of class C*
and exact then

8&)1' . 8&)j
dxi O’

(10)
forall1 <i,5 <n.
Proof Assume w is a form of class C' and exact. Since w is exact then

w = df for a C*-function f: U — R and w; = 9f/0z" for 1 <i < n. Yet w
is of class C! which means f is a C>-function. Then for any 1 < j < n,

57— 95 \Bai) = = by Theorem 15

dw, 9 (Of 0*f o*f
C Qridxt Oxidxd

8wj
oxt’

Definition 17 A 1-form w : U — Hom (R", R) is closed if it’s components
satisfy (10).

Example 18 The 1-form w = 2xydx + (2% + y?) dy is closed form since

0(2zy) _ o 9 (2% +y?)
dy ox




Theorem 16 states that for forms of class C!

w is exact = w is closed.

The converse is not true, there exist closed 1-forms which are not
exact, so the set of 1-forms satisfying (10) strictly include the set of exact 1-
forms. In fact it can be shown that a 1-form w is exact if and only it is closed
and U is ‘simply connected’. In particular, since R™ is simply connected we
have that w is exact iff w is closed on R™. This is a special case of Poincare’s

Lemma for differential forms.

To sum up, in general, for forms of class C!

w exact =— w is closed,

w is closed =5 w exact.

The contrapositive of Theorem 16 is the Test of non-exactness:

w is not closed = w is not exact.

This could be written as

8(,%‘ Ow 3
oxI 7 oxt

J1<4,5<n : —> w IS not exact.
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6.2 Line integrals

Earlier when we looked at curves I used = for both the function and the

image. Here I use « only for the image.

Definition 19 A differentiable curve ~ in an open set U C R" is the
image of a function g : [a,b] — U of class C'. The initial point of the curve
is g(a) and the final point is g(b). A curve is said to be closed if g(a) = g(b).

Definition 20 Given a differentiable curve v in an open set U C R"™ and a

1-form w on U we define the line integral of w along v to be

/f" B /ab wg() (8'(1) )dt,

if it exists.

So, at every point g (t) on v, we evaluate the linear function wg) on the
tangent vector g’ (t). This gives a real number depending on the point of the

curve, that is on t. We then integrate this real-valued function of ¢.

There can be many functions with the same image . The next result
states that under reasonable assumptions definition 20 is independent of
which function is chosen. The assumption is that if v is the image of both
g :la,b] - U and f : [a, 8] — U then there exists a differentiable bijection
¢ |a, B] = [a,b] with ¢(a) = a, ¢(5) = b such that f =g o ¢.

Lemma 21 The value of the integral does not depend on the parametrization

as long as the parametrisations are in the same direction along the curve.

Proof Let v =Im f = Im g where g : [a,b] — U and f : [a, 5] — U and there
exists a differentiable bijection ¢ : [«, 5] — [a,b] with ¢(a) = a, ¢(5) = b
such that f = go ¢.

Recall the Chain Rule in the particular case R % R & R” when

(g09¢) (5) =g (&(s)) ¢/(s) . Then

11



B
we(s(s)) (8'(6(5)) )¢ (s) ds

a\
o
€
&
=
—
oq\
—
N—
N—
joH
~
|
Q\

using the substitution ¢ = ¢(s),

B
We(a(s)) (g'(¢(s) @' (s)) )ds since weg(g(s)) is linear,

I
-

B
Wigos)(s)( (&0 0) (s))ds Dby the Chain Rule,

I
i

B
L«Jf(s) (f’ (S)) ds

I
T

since f = g o ¢. |

Example 22 Integrate the 1-form
w = r?ydx + yPedy + 2dz,
along =, the curve in R?, parametrised by

cost
g(t)=| sint |,
t

for 0 <t <d4r. (So~ is part of a spiral.)
Solution Recall that if w = wdr + wady + wsdz, then
wa = wi(a) dz(a)+ws(a) dy(a) +ws(a) dz(a) = wi(a) p' +wa(a) p*+ws(a) p’.

In the present case, this becomes wg() = (cos? tsint) p'+ (sin® ¢ cost) p*+tp?.

Next
—sint

g'(t)= cost ,
1

S0 wg(n) (g (1)) = —cos? tsin®t + sin® tcos® t + 1 = t.

4
/w:/ tdt = 8n°.
v 0

12

Therefore



Now we get a form of the Fundamental Theorem of Calculus for exact

1-forms.

Theorem 23 Assume w is exact, so w = df for some function f of class

C! on an open set U C R™. Assume ~ is a differentiable curve in U from X

szl#zﬂ&%ﬁ@d

Note that this is independent of the choice of 4, it depends only on the end

to x;. Then

points.

Proof Suppose that « is parametrized by g : [a,b] — U so that g (a) = xg
and g (b) = x;. Recall the Chain Rule, in the special case R & R” EN R,

when (f o g)' (t) = dfgw) (g’ (¢)). Then

b
/ df = / dfg) (8 (t) )dt by definition
~ a

b
— / (fog) (t)dt by the Chain Rule

= (fog)(b)—(fog)(a),

by the Fundamental Theorem of Calculus which requires (f o g)’ to be con-
tinuous. That f’ is continuous follows since f is a function of class C'. And

g’ is continuous by the definition of differentiable curve. Continuing,

l/#zf@@ﬁ—f@tzf@ﬂ—ﬂm%
[ |

Corollary 24 Assume that w : U — Hom (R™,R) is an exact 1-form on an
open set U C R™ and = is a closed differentiable curve in U then f‘yw = 0.

Proof Immediate from Theorem since « closed means that x, = x;. |

13



Remark This result provides another method for showing that a 1-form in

not exact.

v closed and / w # 0 = w is not exact.
2l

See the Problem Sheet for an application of this principle.

14



6.3 Differential 2-forms

Definition 25 Hom (R™ x R™, R) is the set of all maps from R™ x R" to R

which are linear in both variables (i.e. they are bilinear).
So if L € Hom (R™ x R™, R) then, for o, 5 € R and x,y,w,z € R",
L(ax + fBy,z) = oalL(x,z)+ L(y,z),
L(x,aw + fz) = aL(x,w)+ SL(x,z).
Definition 26 A differential form of degree 2, also known as a 2-form,

is a function w : U C R™ — Hom (R™ x R™, R) such that for all a € U and

u, v € R" we have w, (v,u) = —w, (u,v).

See the Appendix for some motivation for this definition and in particular
the requirement that w, is anti-symmetric, i.e. w,(v,u) = —w, (u,v) for
all u,v € R™. It rests on the idea that w, (u, v) represents the area between

u and v and if they are swapped the area changes sign.
Note that being anti-symmetric means that w, (u,u) = 0 for all u € R".

Repeat the argument seen earlier: If L € Hom (R™ x R™, R) then, for
(u,v) € R" x R",

L(u,v) = L(Xn: u'e;, anvje]) = anzn:uiij(ei,ej)
i=1 j=1

i=1 j=1

= > > Llewe)p(wp(u). (11)

i=1 j=1
Let w be a 2-form on an open set U C R™ and let a € U, then w, :
R™ x R" — R. By (11) with L = w,,

wa(wv) = > walene)p(u)p(v)

= Z wa (€1, ;) p'(u) pP(v) since w, (e;, €;) = 0,
zl,;él
= Z wa (€i,€;) (p'(w) p (v) — p/ (u) pi (v) ), (12)

15



by the assumption w, (u,v) = —w, (v, u) for a 2-form. Here

P ) P (v) = 9 () p (v) = win? — o = det ( utov ) |

ul vl

Think of this as the area of the parallelogram between the projections of u
and v onto the i-j-th plane. This should be motivation for the following

definition.

Definition 27 For1<i,j <n definep' Ap’ : R* x R® =+ R by
p' AP (u,v) = det ( v ) ,
w v
for all (u,v) € R" x R". We say p' ‘wedge’ p’.

These bilinear functions are anti-symmetric p’ A p’ = —p? A p’ from which
it follows that p' A p* = 0.

Example Calculate p' A p?(vi,va), pt A p*(vi,va) and p* A p3(vy, vy) for
vi=(1,2,-1)" and v, = (-=1,0,1)".

Solution

1 -1
pl/\pQ(vl,vg) = det 5 >:2,

1 -1
p' AP (vi,ve) = det 1 )IO,

2 0
PP Api(vi,ve) = det ) 1>:2.

|
Returning to (12) we can now write
wa (u,v) = Z wa (€i, ej)pi N pj(u> v),
1<i<j<n
for all (u,v) € R" x R". Thus
Wa = Z wa (e, €;)p' AP, (13)
1<i<j<n

for all a € U. Motivated by Definition 6 we have

16



Definition 28 Let w be a 2-form on an open set U C R™. Define functions
wij:U—=>Rbyw;(a) =wale;,e;) forl <i,j<n.

Just as in Definition 5 we defined dz’to be the constant 1-form such that

dz'(a) = p' for all a € R™, we define special constant 2-forms:

Definition 29 Write dx'Adx? to be the constant 2-form on R™ such that for
alla e R
dz' Adx? (a) = p" Apl.

With these two definitions (13) can be rewritten as

wa= Y wij(a)da’Adal(a)

1<i<j<n

for all a € U. Hence
w = Z w;jdx’ A da? . (14)

1<i<j<n

Thus all 2-forms can be written as a linear combination of the (g) terms
dz'Adx?; 1<i<j<n with coefficients w;; : U — R. It can be shown that
the do'Adx?, 1<i<j<n are linearly independent (see Appendix), and hence

form a basis for 2-forms..
Example 30 The general 2-form on U C R3 has the form
wigdr Ndy +wysde ANdz +wazdy A dz (15)

where each w; j: U — R.

For a particular example.
Example 31 Let
a=zzdv ANdy+ (z +y2)de Adz + 2°zdy A dz
be a 2-form on R3. Ewvaluate a,(vy,va) at the point a = (1, —1,2)" with

vi=(1,2,—-1)" and vo = (=1,0,1)":

17



Solution The function a, € Hom (R? x R?, R) is
Qa =2p" AP —p' APP 207 AP
Evaluated at (vq,vy) it is

1 -1
2 0

20
-1

aa(Vl,Vg):Q :4—0—|—4:8

1 -1
—1 1

18



6.4 Surface Integrals

Definition 32 Let S be a parameterized 2 dimensional surface in R", so
there exists a Fréchet differentiable g : D — R™ for some D C R? for which

S={gx):xeD, Jg(x) of full rank}.

Let w be a 2-form defined on an open set U C R™ containing S, i.e. S CU.
Then the integral of w over S is defined to be

B dg (s,t) 0g(s,t)
/Sw = /D/wg(s,t)( % ' ot dsdt,

if it exists.

In attempting to understand this we know that at every point g (s,t)
on the surface, the directional derivatives vi = dig (s,t) and vo = dag (s, 1)
are two, independent vectors in the tangent space. Then wg(s s (V1,V2) is a
measure of the area of the parallelogram between vy and v, in the tangent

Space. This is then integrated over the surface.

In the definition the set D C R? need not be open (and if not, we can
only require that g is Fréchet differentiable on the interior points of D). If

D is not open the surface may have a boundary as in the next example.

Example 33 Evaluate
/(x—l—z)dx/\dy+x2dx/\dz+xydyAdz,
S

where S is the parametrized surface

S
s+t 0<s<1,0<t<1
st

Solution In this case g(s,t) = (s,s +t,st)" and w =(x+2) de Ady+x* dz A
dz + zydy AN dz. So

We(sy) = (5 + st) PP AR+ sTpt AP 4 s(s 1) pt A PP

19



Next dig((s,)") = (1,1,8)" and dog((s,1)") = (0,1,s)". Hence,

g (s,t) Jg(st)
Ween\Tos 0 ot

= ((s+st)p' Ap*+s°p' AP* + s(s+t)p> Ap?)

= <(3 + st)

=s+st+s +s(s+t)(s—1)

10
11

1 0
t s

2

+ s +s(s+1)

:S+St+83—|—83—8t2.

Finally

/(x+z)dx/\dy+x2dx/\dz+a:ydy/\dz
s

1,
:/ /(s—l—st+33+s3—st2)dsdt
o Jo

_/1 S2+82t+284 s24275! i@t
S 12 2 4 2 .,
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6.5 Products of 1-forms

Be aware that the definition of daz’A dx? above is of the object and not a

binary operation A. Nonetheless we can define the binary operation by

Definition 34 Given dx' and dx’, constant 1-forms on U C R", the wedge
product (or exterior product) is dr'Adz’ given by Definition 29. Extend
this by linearity to the wedge product of general 1-forms.

The wedge product of two 1-forms is, by definition, a 2-form.

Example. Let « = v dx+2zdy+zydz, and 3 = y dx — z dy+x dz be 1-forms
on R3. Then

aNB = (vdr+zdy+azydz) A\ (yde — zdy + xdz)
= zydr Ndr — xzde Ady + 2° dx A dz
tyzdy Ade — 2% dy A dy + xzdy A dz
+ay®dz Adx — xyzdz A dy + 2*y dz A dz
= —xzdx ANdy + 2Pdx ANdz + yzdy A do
trzdy Adz + zy*dz Ade — zyzdz A dy

since dx Adx = dy ANdy = dz N dz = 0. Then using dy A de = —dx N dy etc.
we get

aAB=(—zz—yz)de ANdy + (2* — zy®) dx Adz + (zz + zyz) dy A dz.
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6.6 Differentials of 1-forms.

For completeness,
Definition 35 A 0-form on U C R" is a function f: U — R.

In this terminology, the differential of a O-form f is
df = -dz" 1
f Z ol (16)

a 1-form. Perhaps we can give a definition of a differential of a 1-form and

it will be a 2-form.

Without motivation (for that see the Appendix) we give:

Definition 36 Suppose that
w = ijdxj
j=1

is a 1-form of class C* on an open set U C R™, where w; : U — R. The

exterior differential dw is the 2-form on U given by

dw = Zdwj/\dxj.

Jj=1

Example 37 Find the differential of the 1-form o = xyz dx + 2*y dy + (v —
yz)dz on R3.

Solution

do = d (zyz) Ndz + d (2y) Ady + d (z — yz) Adz
= (yzdr + xzdy + vy dz) Ade + (2zyde + 22 dy) Ady + (dr — zdy — ydz) A dz
=xzdy Ndr + xydz Ndx + 2xyde Ndy + dx N dz — zdy N dz,

since dx Adx = dy Ndy = dz Adz = 0. Then using dy A dx = —dx N dy etc.

we get

doao = (—xz+2zy)de Ndy + (—xy + 1) de N dz — zdy A dz.
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Proposition 38 If w = Z?:I w; dxd is a 1-form of class C' on an open set

U C R"™ then 5 5
U.)j Wi . .
= - — - | d2’ J
dw Z (8:62 8:1:3) ' A dx

1<i<j<n

Proof By definition
dw = Zdwj A da.
j=1
From (16)
ow;
dw; L da.
“i = ; ox?

Thus,

dw = Z (Z O, 25 gy ) Ada = Z Z&"J da' A da?, (17)

=1 j=1
i#j

using dz’A dz*= 0. Continuing we collect together (4, j) and (j,7) terms, so

ow; . . 0w, -
dw = —Ldz' A da? + —d2? A dx’
“ Z <0xzx $+893]x x)
1<i<j<n
_ B i j
= 2 (axi axj>d“d:”’
1<i<j<n
by the anti-symmetric property da’ A do’= —dxiA da’. |

Corollary 39 A 1-form w of class C' is closed if and only if dw = 0.

Proof This is immediate from Definition 17 which states that w is closed if

and only if
Ow; _ Ows

ort  Oxi 7
forall 1 <i<j<n. [ |

Later we define forms of degree > 1. Then dw = 0 becomes the definition

of closed.
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Corollary 40 If f is a function of class C? then d*f = 0.

Proof If f is of class C? then df is an exact 1-form of class C! which, by
Theorem 16, must therefore be closed. Then, by Corollary 39, d (df) = 0,
ie. d*f =0. |

These results say that if w = df for some f then dw = 0. The converse,
if dw = 0 then w = df for some f, need not be true. The conditions under

which it is true is the subject of Poincare’s Lemma mentioned earlier.

6.7 Stokes’ Theorem

Recall an earlier example where our surface had a boundary. In the next
important result an integral over the boundary is compared with an integral
over the surface. As an example let S be a surface in R? with boundary 95.
Let w be a 1-form defined on S. Then one can integrate the 1-form w over
0S. Alternatively you can differentiate w and integrate the resulting 2-form
dw over the surface S. Stoke’s Theorem says that the results are the same!
The result holds in great generality but we have only time for this simple

version.

Suppose that g : [0,1] x [0,1] — R™ is a function of class C?* parametrizing
S C R". Then the boundary of S, denoted 05, may be parametrized using

four differentiable curves:

gy: [0,1] = R™ given by gy(s) = g([s,0]") with image B,
g [0,1] = R™ given by gi(s) =g([s,1]") with image T,
g [0,1] = R™ given by g(t) =g([0,#]") with image L,
g.:[0,1] = R" given by g, (t) =g([1,#]") with image R.

Then we can prove the following result.

Theorem 41 Stokes’ Theorem - special case If ¢ is a 1-form of class

Ct on U CR™ and S is a surface in U parametrized by a function of class

C2. Then
Joo= fo=foom foom o e
24



Though it might be lost in the notation, we are going around the square
[0,1] x [0,1] in a counter clockwise direction, from (0,0) to (1,0), using gy;
from (1,0) to (1, 1) using g,; from (1,1) to (0, 1) using g; (but in the reverse
direction) and from (0,1) back to (0,0) using g; (but again in the reverse
direction). You can see this reflected in the choice of names for the image

lines, B for bottom edge of the square, R for the right hand edge etc.

We now calculate the value of a 2-form at a point on a surface, calculated

on two tangent vectors to the surface.

Lemma 42 Let g : V C R? — R" be a C%-function. Let ¢ be a 1-form on
an open set U C R™ containing the image of g. Then, for s = (s,t)T eV,

) 9] 33 dg'
St (®) = ZZW D% )

i=1 j=1

n 8291‘
#3000 (66 55709
Further, the 2-form d¢ satisfies
g og 0 og 0 0g
g (560, 50) = 0w (0] ~ 50w (E06)). (19)

Proof We saw within the proof of Proposition 38 that the differential of
¢ =3, ¢datis

dp = ZZ Jda;Adxﬂ

i=1 j=1
So
dogs) = ZZ a L(g(s)) p'A P,
Thus
0 0 " 00, g’ g’ g’ g
g (G519 5 9) =22 G2 (T 05 0~ 5 &5 6)
i=1 j=1
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Next we examine the RHS of (19). From

n

¢ = odr’,
i=1
we get

ey = D 0 (8(5) .

i=1

Thus

o (B2) = Sateonr (Ee)

i=1

= Yol

Then, by the Product Rule for differentiation,

%(S ( ) Z@s +Z¢ gzait( )-

Use the Chain Rule inside the first sum to give

2 it (s) = 00 &) L (s).

Combine these last two lines to get (18).

Repeat, interchanging s and ¢ to get

%¢( ) Zzama ag]()aai'”

=1 j=1

+370,(8(5) o (5).

Subtract the two results. Since g is C? a result in Chapter 6 is that

aZQi 32 7
@t@s( s) = 83815( )
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and so these terms cancel, leaving
o) og og
Setee (S 0) ~ 5o ()

S (e 0 0 5 s 0 o))

i=1 j=1

S we (Lo e -2 o).

Yet this has been seen previously in (20) and this equality gives the last

claim of the lemma. [ |

Proof of Stokes’ Theorem By definition

/Sd(b //d¢ y (a—g )%w))dsdt
[ (ot () = St (5 (50)) ) s

by Lemma 42. Consider this as a difference of two iterated integrals. The
first

(L e ()9 = [ s (00) s ()
/01 Per (1) (% (t)) dt — /01 Dyt (% (t)) dt
= [o=[o

by the definition of integration of a 1-form. Similarly, the second integral in

UL e ) o o
e (e L) (e )

Hence



giving the required result. |

This is a special case of Stokes” Theorem in that the surface is an image
of a square. We can allow more general surfaces. A usual form of Stokes’
Theorem might be

Theorem 43 Let S be a smooth surface in R™, bounded by a closed curve
0S. Assume that the surface is orientable, and that the boundary curve is
oriented so that the surface lies to the left of the curve (as you walk around
the boundary, standing "up’ in the direction of the orientated normal to the
surface). Let ¢ be a 1-form of class Ct defined on a subset U C R™ containing

S. Then
/dqﬁ: 0.
s as

A ‘flat’ version of this was given in MATH10121, where S lies in R?
(specifically the z -y plane inside R™).

Example In Question Sheet 9 the following questions are asked:

i. Integrate the 1-form w = (z + y + 2) de+y>dy+zydz along the bound-
ary of the unit circle in the x -y plane, centre the origin, in the counter-
clockwise direction.

ii. Integrate the 2-form B8 = —dz Ady + (y — 1) dz A dz + zdy A dz over
a. the upper half of the unit sphere, so 22 + 4% + 22 = 1 with 2 > 0,

b. the region in the z-y plane 22 + 2 < 1.

The connection between these questions is that the differential of w in
part i. is the 3 in part ii. That is dw = 3. Also the unit circle of part i. is
the boundary of the surfaces in parts ii. a. & b. Thus Stoke’s Theorem says

that we should get the same answers for all three parts.

28



6.8 Differential k-forms

Definition 44 For 1 < iy,19,...,1 < n, we define functions on k-tuples of

vectors
PrAPEA- APt (R = R
by
t gl
PLEAPZA - ApE(ty,. .., t,) = det
e tfj

for vectors t; e R™, 1 <1 < k.

Examples on R*,

pL AP (RY)? — R; and a particular example is

19
2 0 19
1 3
A _ —8-6=2
PAPL s g 38
0 —4

1 3 1
2 =2 4
2 01,4 -2 4
pPTAp Ap L7 1 3 1|=14+8=22
—1 0 1
-1 0 1
p? : R* = R; and a particular example is
P> = 3.

Proposition 45 (a) If two terms in p™* A--- Ap' are interchanged, then the
function changes sign, e.g. p* A p?> Ap' = —p' A p? A pt.

(b) If two terms in p™* A --- A p™ are equal, then the function is zero, e.g.
pt Ap3Apt=0.
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Proof These results are immediate from the properties of determinants. W

Definition 46 A function f : (R")¥ — R is said to be multilinear if it

1s linear in each component.
For example,
Fsty +ut], b, ts, ..., 65) = sf(t1, ta, bs, oo, b)) 4+ wf(E], ta, b, ..., tr)
is the statement that f is linear in the first component.

Definition 47 A function f : (R™)* — R is said to be alternating if
f(t1,t2,t3, ..., t,) changes sign if two of the vectors tq,ts,ts,...,t; are in-

terchanged,
For example f(ts, t1,ts) = — (b1, 2, t3).

Proposition 48 The functions p* A --- A p'* : (R")* — R are multilinear

and alternating.

Proof This is immediate from the basic properties of determinants. |

Note that for just two terms we talked of p’ A p/ being anti-symmetric

instead of alternating, but they mean the same thing.

Definition 49 The set of all alternating multilinear maps (R™)* — R s
denoted A*(R",R). Thus A*(R",R) = Hom(R", R).

By convention, A°(R",R) = R.

Theorem 50 The set of all alternating multilinear maps (R™)F — R, A*(R", R),

s a vector space with a basis given by
{pP A APk |1 <iy <ig<--<ip<n}

Proof Not given. |
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Corollary 51 The dimension of the vector space A¥(R™ R) is (Z) In par-
ticular, if k > n, then A*(R",R) = 0.

Proof This follows from Theorem 50 since the dimension of a vector space

is given by the number of vectors in a basis. |

Definition 52 Given an open set U C R™, a (differential) k-form on U
is a function

w: U — A*(R",R).
As for 1-forms (Definition 2) we usually write w, in place of w(a).

Definition 53 We write dz'' A - - - A dx® : R* — A¥(R™,R) for the constant
k-form given by

dz' A - Ada(x) = pt A - A D,
for all x € R™.
Proposition 54 (a) If two terms in dx"* A - - - A dz'* are interchanged, then
the function changes sign, e.g. dx* A\ da? A dzt = —dat A dz? A da?.
(b) If two terms in dx" A -+ A dx' are equal, then the function is zero,
e.q. dzt A dx® Adzt = 0.

Proof This is immediate from Proposition 45. |

Remarks. (a) It is a consequence of Theorem 50 that each k-form w : U —
A*(R™ R), U open in R", can be written

w= Z Wiy, ik dz"* N -« Ndx*
1<iy << <n
for some functions w;, _;,: U CR® — R.

(b) We say that the k-form is of class C if all these component functions,

Wiy ..ip» are of class C9.

(¢) By Corollary 51, for k > n, the only k-form on U C R™ is the zero form.
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Definition 55 The wedge product or exterior product of a k-form o
and an 1 -form B is a (k+1) -form a A 3. To define this we put

(dz" A - Adz™) A (dz? A - Ada?t) = da™ A - Ada A daT A A dat
and extend linearly.

Example If w = zzdx A dy + (siny)dx Adz + e*dy A dz and o = xdx +
zdy + xry dz then

aAw = (zzdx Ndy + (siny)dz Ndz+e"dy Ndz) N (xdx + zdy + zy dz)
= zzxde Ady Adx + x2%de A dy A dy + 2*yzde A dy A dz
+ z(siny) de A dz ANdzx + (siny)zdx Adz AN dy + zy(siny) de A dz A dz

+xe®dy Ndz Ndx +e*zdy Ndz N dy + xe®ydy Adz N dz,

having used only the linearity part of the definition. Now use the fact that

terms with repeated differentials are zero. So

alw = z*yzdr AdyAdz+ (siny)zdr Adz Ady + xe® dy Adz A\ do

= (x2yz — zsiny + xex) dx N\dy N dz,

having used the alternating properties of A. ]

The motivation for the following definition is simply that it is what we

did when differentiating a 1-form.
Definition 56 Suppose that

W= Z Wiy ,oooig dz' A - A da
1< << <n
is a k-form on an open set U C R", where w;, _; : U — R. Then the
exterior differential dw is the (k + 1)-form on U given by

do= Y dwy g Ada A Adatt,

1<i1 << <n
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Stress that the differential of a k-form is a (k+1)-form. The form w has to

,,,,,

dw will be of class C*~ .
Example.
d((z* + y) de A dy + zyzde Adz + 2%z dy A dz)
=d(2* +y) Ndz ANdy + d (zyz) ANdz ANdz + d (2°2) Ady A dz
= (2zdx + dy) N dx A dy + (yzdx + xzdy + xydz) A de A dz
+ (2zzda + 2°dz) Ndy A dz

=xzdy Ndx ANdz + 2zzdx N\ dy A dz
= —xzdx Ndy Ndz + 2xzdz Ndy N dz

=xzdx Ndy N\ dz.

Definition 57 (a) A k-form w is exact when w = da for a (k—1)-form .
(b) A k-form w is closed when dw = 0.

In Corollary 40 it was shown that if f: U C R" — R, i.e. a O-form, was

C? then d?f = 0. This is, in fact, true for forms of all orders.
Proposition 58 Given a k-form w of class C* then d*w = d(dw) = 0.

Proof From the definition of the exterior differential

dw = Z dwi, ... i, N Az A - A dz.

1< << <n

Look at just one term in the sum and write f = w;, so the term is

a—f.dxi Adzt A - A da®.
ox’

..... 8]

df Nda' A Ndatt =
=1
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Then d(dw) is a sum of

d(df nda™ A+ Ada™) = > d (%dwi/\dwil A---Ad:cik)
i=1

O >’f j i i i
= ZZ ———dz? Ndx* Ndx" A - A da'F.
O0xI 0xt

i=1 j=1

The point here is that the addition of the Adx®™ A --- A dz® makes no
difference to the argument seen before. Pairing (7, ;) and (j,?) pairs we get
this sum equals

2 2
Z (aﬁf — of )d:rj/\da:i/\d:vil/\---/\dxi’“:()

rI0xt  Oxtoxd

1<i<j<n

since f = w;, . is a C? function. [

Hence, if w = da for some form a then dw = 0. In words:
Corollary 59 If a k-form of class C* is exact then it is closed.

Remark. The converse, if dw = 0 then w = da for some form «, is only
partially true. It is true ‘locally’: given a closed k-form w on an open set
U C R", any point x € U has a neighbourhood on which there exists a
(k—1)-form a with w = da . It is also true if the forms defined on the
whole of R”. The conditions under which the converse holds are the subject

of Poincaré’s Lemma.

6.9 Integration of a k-form over a manifold

Without defining the terms we will state a version of the general Stokes’
Theorem as an advert for the type of result you might find in MATH31061
Differentiable Manifolds.

Theorem 60 Let M C R™ be a compact orientable reqular k-surface with
boundary OM of class C* and let w be a C' (k—1)-form on an open neigh-

bourhood U of M. Then
/ w:/ dw.
oM M
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Appendix to Section 6

Motivation of definition of a 1-form and its integral.

If f:[a,b] — R is integrable then we (presumably) know the definition

/a ) de

We can look upon this as the integral over the curve [a,b] within R. But a

of

curve is simply the image of a continuous map of an interval (which in this
case could be the identity map). Let ¢ be differentiable map, say from [0, 1]
to [a,b], with ¢ (0) = a and ¢ (1) = b. Then, by the well-known change of

variables,
[ 1w~ [ fowewa

Let us attempt to generalise this to paths in R™. A path - in R” will be the
image of some differentiable map g : [0,1] — R"™, so v =Img. Assume that
f is a scalar-valued function defined on the points of ~; perhaps f : U — R,
for some open set U C R" with v C U. What meaning could we give to

/0 Flg() g/ (t) dt ?

Without some definition of integrating vectors this has no meaning for
g’ (t) is the tangent vector to the curve v at point g (¢). Instead we introduce

a linear function w from vectors to R and consider

/0 Fe(t) w (1) dt.

Except this is not quite correct. The vector g'(t) is a vector with a point of
application, it may be that at different ¢; and ¢, the vectors g'(t1) and g'(t2)
have the same direction and magnitude but a different point of application
(g(t1) and g(t2) respectively). Thus we want the possibility that, at g’(t1)
and g'(t3), w can be a different function, in which case we assume w also
depends on the point of application, written as wg). Now w is a function
from U such that for every a € U we have a linear function w, from vectors
to R. This has led us to a 1-form.
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Finally when you look at the definition of the integral of a 1-form you
find no mention of a function f. But if w is a 1-form then fw is a 1-form for
any f:U — R. Thus we can ‘absorb’ the f into the 1-form and consider

1
| weogoar

0
to be the definition of the integral of w over ~.

Projections are linearly independent.

Let p' : R® —+ R, 1 < i < n be the projection functions on R™. Then, by
definition, p’ (e;) = d; ;. Assume there exist ¢; € R: >  ¢;p' = 0, the zero
function. Then, for each 1 < 57 < n, we have

n

0= 0<ej) = Z Cipi (ej) = Zciéi,j = Cj.

i=1 i=1

Thus, for all 1 < j < n we have ¢; = 0. Hence the p/, 1 < j < n, are linearly

independent.

Second derivatives need not be equal

Example 61 Define
zy (@ —y*) . :
f<X)2562——i-y2 ifx #0 with f(0)=0.

Then
o*f
0xdy

0 f B
Qyﬁx(o) =1

(0) = —1 while

Verification Assume x # 0 and multiply up so (22 + ¢?) f(x) = xy (22 — y?).

Then

0f(x)

_ 2 2\ 2 _ .3 _ 2
dy :L’(JL‘ y) 2xy x” — 3zy”.

2yf(x) + (¢° +4°)

Put y = 0 (which with x # 0 implies = # 0) to get

97(x) =x. (22)

83] x=(z,0)T
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If z = 0 go back to the definition,

of F(0.07) = £(0)
o) = tim : 0 (23)
Similarly,
- if 0
8](;(;() _ Yy .1 y# (24)
x:(O,y)T 0 if Y = 0.
Then
of((h,0)"
0x0y ox Oy h—0 h Ay y h—0 h
by (22) and (23) . Also,
o’f 9 0f0) . 1 3f((07t>T) of .\ . —t
oyor ) = oy o imi| T ar e )Ty b

by (24). So we have an example of where the order of the derivatives is

important. |

Theorem 15

In the proof of Theorem 15 we have used the result that

d 0
%f(a—{— se;j +te;) = a—g‘i(ajL se; + te;) .

The derivative on the left hand side is the one known since before University,
the one on the right is the partial, i.e. directional, derivative defined in this

course.

Let y = a+te; and w = y + se;then

f(y +(s+h)e;) — fly + se;)

d
—f(y +se;) = lim

ds h—0 h
. f(w+hey) = f(w)  Of
N llbli% h Qa7 (w).
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2-forms in R? and their integrals.

All 2-forms on R? are of the form w = fdx Ady for some f : R? — R. Let
g : R? — R? be Fréchet differentiable on D" C R?. Let D = g(D’). Then, by

definition of integration,

/“’—//“’gw)(agax y)ﬁgéﬂ;,y))dxdy

://ﬂg(x,y))plAﬁ((g)(j%))dwdy
/ / Fa(x)) |Jg(x)] dx. (25)

If we choose g to be the identity, so D = D', we get

=] from

i.e. the definition for 2-forms reduces to the double integrals we already

know. But further, we can combine this reinterpretation of integration of a
2-form with (25) to get

//f D elix = [ w //f (26)

This is the well-known formula for change of variables in an integral in R2.
We normally talk of |Jg(x)| being the Jacobian of g. This is why I have been

careful throughout the course, referring to Jg(x) as the Jacobian matriz.
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Motivation for the definition of a 2-form and its integral.

Let S C R"™ be a surface given parametrically by a Fréchet differentiable
map g : D — R" for some D C R?. So S =1Img and Jg(s,t) is of rank 2 for
all (s,t)" € D.

In place of functions of the vector g'(t) which appears in the line integral
we might consider real valued functions of dg. The Fréchet derivative dg can
be considered as a linear map or, as Jg, a matrix. For this discussion think
of dg as the set of its two columns, the directional derivatives dyg and d;g.
For each p € S, look at real valued functions wy, of pairs (v, w) of vectors v

and w with point of application p € S with the hope that
//wg(sﬂf) (dsga dtg) dsdt (27)
D

makes sense.

If (27) represents the integral over S it should not depend on the parametriza-

tion. So if h: D" — R™ also represents S in that S = Im h, the integral

/ / Wh(uw) (duh, dyh) dudv
D/

should have the same value as (27). Assume there exists an invertible differ-
entiable function k : D" — D such that h = gok. Since wg(s1)(dsg, dig) is a
real valued function of (s, )" € R? we can apply (25) to say

//wg(&t) (dsg, dtg) dsdt = //wg(k(w)) (dsg, dtg) |Jk(u)| dudv. (28)
D D’

By the Chain Rule

d,k* d,k?

Th(u) = Ja(k(w)) Jk(u) = Ja(s) Jk(u) = (d.g, dig) < 4k df > |

To cut down notation write this as

(d,h,dyh) = (adg + Bdig, vdsg + ddig) .
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Forgetting temporarily the subscript
w(d,h,d,h) = w(ad,g+ fdig, vd.g + id;g)
= ayw(dsg.dsg) + adw(dsg, dig) (29)
+hyw(dig, dsg) + Bow(dig, dig)  (30)

assuming wyp, is linear in both arguments (bilinear). What further properties

should we demand of w?

In some sense wp(u, v) should represent the area between u and v. In
particular if u and v are parallel then wp(u,v) = 0. If u and v are inter-
changed then wp(u,v) should change sign, i.e. wp(v,u) = —wp(u,v). In
(29) this give

w(d,h,d,h) = (ad — fvy)w(dsg, dig) = |J (k (u))| w(dsg, dig),

having recalled the definitions of a, 3, ... Returning to (28),

//wg(sjt)(dsg,dtg)dsdt = //wh(uvv)(dsg,dtg)|Jk(u)|dudv
D D’

— / /wh(u,v) (duh, dvh) dud’l}
D!

Thus under the properties of w(u,v) = —w(v,u) and linearity in both
variables we have that the integral over .S does not depend on the parametriza-

tion.

The constant 2-forms dz‘ Adx’/, 1 <i < j < n are linearly
independent.

Proof Assume there exist w;; : U — R such that

Z wi,jdxi Adx? =0,
1<i<j<n
an equality of 2-forms. Then, for any a € U,

Y wij@)dit Adad (@)= D wiy(a)p'Ap =0,

1<i<j<n 1<i<j<n
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the final equality as functions (R")* — R. Note now that, with 1 < k < £ <
n?

1 if (4,4) = (k,0)

0 otherwise.

P A (e, er) = {

Then
0= wij@p AP ((er ) =wi(a).

1<i<j<n

Thus wy (a) = 0 for any a € U, hence wy, = 0.

True for any 1 < k < ¢ < n implies the dz’ Adaz? are linearly independent.
|

Mbotivation for Differential of a 1-form

Let w : U — Hom (R",R) be a 1-form. Ideally a differential of w at
p € U would measure the ‘change’ in wy as p varies. For a scalar-valued
function f of several variables we could measure its rate of change at a point
p in direction v by V f(p) @ v. In the present case wy, is not a scalar-valued

function of p. It is, though, if evaluated on a vector.

If the differential is to be a 2-form assume we are given two vectors V}
and V5, written upper case so we think of them as constant vector fields on
R"™. Given p € U consider wp(V1) and wy(V2) as functions of p, so scalar-
valued functions U — R. We look at the rate of change of w,(V}) as p moves
in the V, direction, and the rate of change of wy(13) as p moves in the V;
direction. That is, we take the gradients w.r.t p, Vwp(V}) and Vw,(V,) and
calculate Vw, (V) @ V3 and Vw,(V2) @ V. Finally, to get an anti-symmetric
form perhaps define the differential dw,(V1, V2) as

Vwp(Va) @ Vi = Vwp (V1) o V2. (31)

Theorem 62 Let w : U — Hom (R",R) be a 1-form. Let Vi and V; be
constant vector fields on R™. Given p € U let

dwp(V1,V2) = Vwy(V2) @ Vi — Vwy (V1) e Va.
Then .
dw :Zdwi A dxt.

i=1
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Proof Write w = 2?21 widx® where w; : U — R are O-forms, and assume

V1, Vo have coordinates v} and v} respectively. Then

n ' n o n 86% o
= g wi(p)vy so Vwp(Vs) eV, = E E 692))11{1)3
i=1 ;

i=1 j=1
Thus
_nnawi(P)jz‘ Jog
Vwp(Vz) @ Vi = Vwp(Vi) o V; = Z Z G (vivy — v3vy) -
i=1 j=1

But
vivh — vl = P (Vi) p'(Va) — p' (Vi) (Va)
= (P AD") (W1, Va)
= d/ Nda'(a) (Vi, Va),

for any a € U. Choose a = p to get

Ow;(p
Vwp(Va) 8 Vi — Vwy (V1) e 1; o dJ/\dx( Y(Vi,Va) .

1=

The form on the right hand side is

ZZ a""’d I A dat = En: (; g‘:yw) Adit = zn:dwi Ada

=1 j=1 i=1 =1

having used the linearity of the wedge product for the first equality, and the
derivative of a O-form (see (16)). |

42



Green’s Theorem

Theorem 63 Green’s Theorem Let C be a closed C' curve in R? orien-
tated counterclockwise and D be the interior of C. If P(x,y) and Q (z,y)

are both functions of class C' then

/CdeJery://]D(%—%—];) dxdy.

Proof The integrand Pdx + Qdy is an example of a 1-form on R? (and all

1-forms are of this form). Then

d(Pdx+ Qdy) = dP ANdx+dQ Ndy

OP OP o0 oQ

= —d —d d —d —d d
(835 x+ay y)/\ x+(8zz x+ay y)/\ Y
P

= a—0ly/\ala:+@alzt/\aly
oy ox
0Q OP

(This is, in fact, just a special case of Proposition 38.)

In the definition of integration over a surface

/w = //wg(s,t) (dlg (s,t) ,dgg(s,t))dsdt.
s
D

choose the identity map g(s,t) = (s,t)” € R2. Then dig(s,t) = (1,0)" and
dyg (s,t) = (0,1)". With w = (Q/dx — OP/dy) dx A dy we get

Wg(s,t) (dlg (Sa t) ) ng (87 t) )

(262 ) as e (1) ()
_ (% (s,t) — g_]; (s, t)) Pt Ap? (((1)) (?))



Hence result follows from Stokes’ Theorem. [ |

Though we have deduced Green’s Theorem from Stokes’ Theorem it is
important to have (and many exist) independent proofs of Green’s Theorem.
This is because many proofs of Stokes’ Theorem reduce it to an application

of Green’s Theorem.

Divergence of Vector Fields

Restrict to R3. Let f : U C R?® — R3 be a vector field. Let w = f e n, where

dy N dz
n=\| dzANdx
dz N\ dy

Thus
w= fldy Ndz + f2dz Ndx + fidx A dy,

the 2 -form associated with f. Also

1 2 3
dw = 8idx/\dy/\dz—l—8ialy/\d,z/\dac+8idz/\alx/\dy
Ox dy 0z
B afl afz afs
= <8x+8y+8z dx N\dy N dz.

Definition 64 For f, a vector field on an open subset U C R3, the diver-

gence of f is
] B 3f1 @fQ 8f3
divt = ox * y + 0z

Thus dw = (divf) dz A dy A dz.

In the general form of Stokes’ Theorem let S C R? be a three dimensional

subset with a boundary 05, a two dimensional surface. Then

/8Sfon—/Sd(fon)_/s(divf)dxdydz,

/ fen :/ (divf) dzdydz.
o3 s

This is known as the Divergence Theorem.

1.e.
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