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6.1 Differential 1-forms

With no motivation (see Appendix) we go straight to the definitions.

Definition 1 The set of all linear maps Rn → R, Hom (Rn, R), is called the

dual space of Rn.

The following is a definition of functions whose values are functions!

Definition 2 A differential form of degree 1 on an open set U ⊆ Rn,

also known as a 1-form, is a function

ω : U → Hom (Rn, R) .

It is usual to write ωa and not ω (a). So, if a ∈ U , then ωa : Rn → R is

a linear function.

Example 3 If the scalar-valued function f : U → R, is Fréchet differen-

tiable on U, an open subset of Rn, then the derivative gives a 1-form, df , the

differential of f .

Solution Given a ∈ U , the Fréchet derivative dfa is not a 1-form but it is a

linear function Rn → R and we can define the function

df : U → Hom (Rn, R) , a 7→ dfa,

which is an example of a 1-form. �

Not all 1-forms arise from differentiating a function. Exactly which 1-forms

do come from differentiating functions is a question studied later.

Studying first Hom (Rn,R) , we recall a special subset of linear functions;

the projection functions pi : Rn → R which satisfy pi(x) = xi, for 1≤ i≤n.

These are important.
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Lemma 4 The projection functions {pi : 1 ≤ i ≤ n} form a basis for Hom (Rn, R).

Proof let L ∈ Hom (Rn,R) be a linear function from Rn to R and x ∈ Rn.

Then

L(x) = L

(
n∑
i=1

xiei

)
=

n∑
i=1

xiL(ei) =
n∑
i=1

pi(x)L(ei) =

(
n∑
i=1

L(ei) p
i

)
(x) .

True for all x ∈ Rn implies the equality of functions

L =
n∑
i=1

L(ei) p
i. (1)

Thus the set of projection functions form a Spanning Set for Hom (Rn,R).

It is easily shown (see the Appendix) that the pi are linearly independent.

Hence {pi : 1 ≤ i ≤ n} is a basis for Hom (Rn,R). �

This means that Hom (Rn, R) is a vector space of dimension n.

Next, studying functions U → Hom (Rn, R) we noted above that Fréchet

derivatives are 1-forms. Recall from Chapter 2 that if L : Rn → R is a linear

function then dLa = L for all a ∈ Rn. The projection functions are linear

hence dpia = pi for all a ∈ Rn. In fact, a different notation is used,

Definition 5 For each 1 ≤ i ≤ n define the constant 1-form dxi on Rn

by

dxi(a) = pi

for all a ∈ Rn.

Aside, it has already been noted that some authors use xi in place of pi,

which leads to xi(x) = xi. It may be confusing to use xi for both a function

and a coordinate of a vector, but it would explain using dxi(a) in place of

dpia. You might also have thought that we should write dxia but it is accepted

convention to write dxi(a). Don’t blame the lecturer for the illogical notation.

It’s historic.

End of Aside.
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Let ω : U → Hom (Rn, R) be a 1-form. Let a ∈ U so ωa : Rn → R is a

linear function. Then by (1) ,

ωa =
n∑
i=1

ωa(ei) p
i.

Yet pi = dxi(b) for any b ∈ U . So we choose b = a, in which case

ωa =
n∑
i=1

ωa(ei) dx
i(a) . (2)

Definition 6 Let ω : U → Hom (Rn, R) be a 1-form. Define functions

ωi : U → R by ωi(a) = ωa(ei) for 1 ≤ i ≤ n.

With this notation (2) becomes

ωa =
n∑
i=1

ωi (a) dxi(a) =

(
n∑
i=1

ωidx
i

)
(a) . (3)

True for all a ∈ U implies the equality of functions

ω =
n∑
i=1

ωidx
i. (4)

Thus every 1-form can be written as a linear combination of the constant

1-forms dxi with coefficients functions ωi : U → R. That is {dxi}1≤i≤n form

a spanning set for 1-forms. Since the {pi}1≤i≤n are linearly independent then

so are the dxi which thus form a basis for the 1-forms.

Example 7

ω = x2ydx+ (sinx) dy

is a 1-form on R2. Find ωa(t) for a = (2, 3)T and t = (−4, 5)T .

Solution By (3), if ω =
∑n

i=1 ωidx
i, then

ωa =
n∑
i=1

ωi(a) dxi(a) =
n∑
i=1

ωi(a) pi.
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In our case,

ω1(x) = x2y and ω2(x) = sin x

so, since a = (2, 3)T , we have ω1(a) = 12 and ω2(a) = sin 2. Thus

ωa = 12dx(a) + (sin 2) dy(a) = 12p1 + (sin 2) p2.

Given t = (−4, 5)T ∈ R2 then

ωa(t) = 12p1
((
−4

5

))
+ (sin 2) p2

((
−4

5

))
= −48 + 5 sin 2.

�

Example 8 If f : U ⊆ Rn → R, U an open subset, is Fréchet differentiable

then df is a 1-form and

df =
n∑
i=1

∂f

∂xi
dxi.

Solution We have already noted in Example 3 that df is a 1-form. In the

notation of (2) we have, for any a ∈ U ,

dfa =
n∑
i=1

dfa(ei) dx
i(a) .

Yet we have seen that a Fréchet derivative evaluated on a direction equals

the directional derivative, so

dfa(ei) = deif(a) = dif(a) =
∂f

∂xi
(a) .

Hence

dfa =
n∑
i=1

∂f

∂xi
(a) dxi(a) .

True for all a ∈ U means we have an equality of functions,

df =
n∑
i=1

∂f

∂xi
dxi. (5)

�

This is, perhaps, reminiscent of the chain rule but now the objects have

a new interpretation in terms of 1-forms.

As an application, this gives us an alternative way of writing the Fréchet

derivatives of the product and quotient functions seen in an earlier chapter.
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Example 9 The differential of the product function p : R2 → R, p(x) = xy

is

dp =
∂p

∂x
dx+

∂p

∂y
dy = ydx+ xdy. (6)

The differential of the quotient function q : R× R† → R, q(x) = x/y is

dq =
∂q

∂x
dx+

∂q

∂y
dy =

1

y
dx− x

y2
dy.

We have seen that Fréchet derivatives are 1-forms; are all 1-forms the

differential of some Fréchet differentiable function?

Example 10 Show that the 1-form xydx+ydy is not the differential of any

Fréchet differentiable function.

Solution Assume otherwise, so there exists a Fréchet differentiable function

f such that

df = xydx+ ydy that is,
∂f

∂x
dx+

∂f

∂y
dy = xydx+ ydy.

Equate coefficients of the constant 1-forms, so

∂f

∂x
= xy and

∂f

∂y
= y. (7)

Integrate the first to get

f(x) =
x2y

2
+ g(y) , (8)

for some function g(y). Differentiate this w.r.t. y when we get

∂f

∂y
=
x2

2
+ g′(y) .

But from (7) we have ∂f/∂y = y so we can equate to get

y =
x2

2
+ g′(y)

Integrate w.r.t. y to get

y2

2
=
x2

2
y + g(y) + C, (9)

for some constant C. Combine (8) and (9) as f(x) = y2/2−C. Yet this does

not satisfy ∂f/∂x = xy seen in (7). Hence no such f exists. �
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A conclusion of this is that not all 1-forms are differentials of Fréchet

differentiable functions. But if they are they are given a special name,

Definition 11 A 1-form ω : U ⊆ Rn → Hom (Rn,R) is exact if there exists

a C1-function f : U ⊆ Rn → R such that ω = df.

Why demand a C1-function and not a Fréchet differentiable function?

One reason is that later we prove a result which states that, under some

conditions, a given form is ‘not the differential of a C1-function’. Under

Definition 11 this conclusion becomes ‘the form is not exact’. Some authors

demand that f is a C∞-function, i.e. all derivatives of all orders exist and

are continuous. Such functions are called smooth.

6.1.1 Second derivatives

Definition 12 Let f : U ⊆ Rn → R, be scalar-valued and Fréchet differ-

entiable on U . If ∂f/∂xi : U → R has a j-th partial derivative, i.e. is

differentiable w.r.t. xj, then this is written

∂f

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi
: U → R.

When j = i this can be written as

∂2f

(∂xi)2
: U → R.

These are all called the partial derivatives of f of order 2.

Similarly, we can define partial derivatives of order q for any q ≥ 1 by

induction on q (when they exist):

∂

∂xiq

(
∂q−1f

∂xiq−1 ...∂xi2∂xi1

)
=

∂qf

∂xiq∂xiq−1 ...∂xi2∂xi1
: U → R.

Definition 13 If all of the q-th order partial derivatives of a function f :

U → R where U is open in Rn exist and are continuous on U , then we say

that f is a function of class Cq, or a Cq - function.

This continues the earlier definition of C1 as the functions whose partial

derivatives exist and are continuous; C0 is the set of continuous functions.
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Definition 14 A 1-form ω is of class Cq if its components ωi are functions

of class Cq.

Note If ω = df then ωi = ∂f/∂xi. In this case the form ω is of class Cq if

and only if the function f is of class Cq+1.

An important result is that if all the derivatives of order 2 of f are con-

tinuous, i.e. if f is of class C2, then the order of differentiation is immaterial.

Theorem 15 If a function f : U → R where U is open in Rn is of class C2

then
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj

for all i and j.

Proof Given a ∈ U then, since U is an open set, there exists a δ > 0 such

that the open ball Bδ (a) centred at a lies within U. Suppose 1 ≤ i, j ≤ n

with i 6= j. Then, for 0 < |t| < δ, define

A (t) = f(a + tej + tei)− f(a + tej)− f(a + tei) + f(a)

= θ (t)− θ (0) ,

where

θ(s) = f(a + sej + tei)− f(a + sej) ,

for s between 0 and t. (Remember, I never said t was positive!).

The function θ is continuous (since f is continuous) and differentiable. In

fact,

θ′(s) =
∂f

∂xj
(a + sej + tei)−

∂f

∂xj
(a + sej) .

(See the Appendix for more details on this step.) Hence by the Mean Value

Theorem for real valued functions of one variable there exists s1 between 0

and t such that θ(t) − θ(0) = θ′(s1) (t− 0). Dividing through by t and we

have

A (t)

t
=

θ (t)− θ (0)

t
=

∂f

∂xj
(a + s1ej + tei)−

∂f

∂xj
(a + s1ej)

= φ (t)− φ (0)
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where

φ (s) =
∂f

∂xj
(a + s1ej + sei) ,

for s between 0 and t. The function φ is continuous (since ∂f/∂xj is contin-

uous) and differentiable. In fact,

φ′ (s) =
∂

∂xi

(
∂f

∂xj
(a + s1ej + sei)

)
=

∂2f

∂xi∂xj
(a + s1ej + sei)

Hence by the Mean Value Theorem for real valued functions of one variable

there exists s2 between 0 and t such that φ (t) − φ (0) = φ′ (s2) (t− 0) .

Dividing by t again,

A (t)

t2
=
φ (t)− φ (0)

t
=

∂2f

∂xi∂xj
(a + s1ej + s2ei) .

As t → 0 we also have s1 and s2 → 0 since they are both ‘stuck between’ 0

and t. Thus

lim
t→0

A (t)

t2
= lim

si→0
s2→0

∂2f

∂xi∂xj
(a + s1ej + s2ei)

=
∂2f

∂xi∂xj

(
lim
si→0
s2→0

(a + s1ej + s2ei)

)

since ∂2f/∂xi∂xj is continuous,

=
∂2f

∂xi∂xj
(a) .

Since we can rearrange A (t) as

A (t) = f(a + tej + tei)− f(a + tej)− f(a + tei) + f(a)

= f(a + tej + tei)− f(a + tei)− f(a + tej) + f(a)

swapping f(a + tej) and f(a + tei)

= f(a + tei + tej)− f(a + tei)− f(a + tej) + f(a) ,
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swapping tej and tei within the first term, we can reverse the roles of i and

j in the above argument. The same argument then gives

lim
t→0

A (t)

t2
=

∂2f

∂xj∂xi
(a) .

Hence result follows. �

Remark There are examples of twice differentiable functions f : R2 → R
for which ∂2f/∂xi∂xj 6= ∂2f/∂xj∂xi. See Appendix.

Our promised property of exactness is

Theorem 16 If a 1-form ω : U ⊆ Rn → Hom (Rn, R) is a form of class C1

and exact then
∂ ωi
∂xj

=
∂ ωj
∂xi

, (10)

for all 1 ≤ i, j ≤ n.

Proof Assume ω is a form of class C1 and exact. Since ω is exact then

ω = df for a C1-function f : U → R and ωi = ∂f/∂xi for 1 ≤ i ≤ n. Yet ω

is of class C1 which means f is a C2-function. Then for any 1 ≤ j ≤ n,

∂ ωi
∂xj

=
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
by Theorem 15

=
∂ ωj
∂xi

.

�

Definition 17 A 1-form ω : U → Hom (Rn, R) is closed if it’s components

satisfy (10).

Example 18 The 1-form ω = 2xydx+ (x2 + y2) dy is closed form since

∂ (2xy)

∂y
= 2x =

∂ (x2 + y2)

∂x
.
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Theorem 16 states that for forms of class C1

ω is exact =⇒ ω is closed.

The converse is not true, there exist closed 1-forms which are not

exact, so the set of 1-forms satisfying (10) strictly include the set of exact 1-

forms. In fact it can be shown that a 1-form ω is exact if and only it is closed

and U is ‘simply connected’. In particular, since Rn is simply connected we

have that ω is exact iff ω is closed on Rn. This is a special case of Poincare’s

Lemma for differential forms.

To sum up, in general, for forms of class C1

ω exact =⇒ ω is closed,

ω is closed 6=⇒ ω exact.

The contrapositive of Theorem 16 is the Test of non-exactness:

ω is not closed =⇒ ω is not exact.

This could be written as

∃ 1≤ i, j≤n :
∂ωi
∂xj
6= ∂ωj
∂xi

=⇒ ω is not exact.
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6.2 Line integrals

Earlier when we looked at curves I used γ for both the function and the

image. Here I use γ only for the image.

Definition 19 A differentiable curve γ in an open set U ⊆ Rn is the

image of a function g : [a, b]→ U of class C1. The initial point of the curve

is g(a) and the final point is g(b). A curve is said to be closed if g(a) = g(b).

Definition 20 Given a differentiable curve γ in an open set U ⊆ Rn and a

1-form ω on U we define the line integral of ω along γ to be∫
γ

ω =

∫ b

a

ωg(t)

(
g′(t)

)
dt,

if it exists.

So, at every point g (t) on γ, we evaluate the linear function ωg(t) on the

tangent vector g′ (t). This gives a real number depending on the point of the

curve, that is on t. We then integrate this real-valued function of t.

There can be many functions with the same image γ. The next result

states that under reasonable assumptions definition 20 is independent of

which function is chosen. The assumption is that if γ is the image of both

g : [a, b] → U and f : [α, β] → U then there exists a differentiable bijection

φ : [α, β]→ [a, b] with φ(α) = a, φ(β) = b such that f = g ◦ φ.

Lemma 21 The value of the integral does not depend on the parametrization

as long as the parametrisations are in the same direction along the curve.

Proof Let γ = Im f = Im g where g : [a, b]→ U and f : [α, β]→ U and there

exists a differentiable bijection φ : [α, β] → [a, b] with φ(α) = a, φ(β) = b

such that f = g ◦ φ.

Recall the Chain Rule in the particular case R φ→ R g→ Rn when

(g ◦ φ)′ (s) = g′ (φ(s))φ′(s) . Then
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∫ b

a

ωg(t) (g′(t)) dt =

∫ β

α

ωg(φ(s))

(
g′(φ(s))

)
φ′(s) ds

using the substitution t = φ(s) ,

=

∫ β

α

ωg(φ(s))

(
g′(φ(s)φ′(s))

)
ds since ωg(φ(s)) is linear,

=

∫ β

α

ω(g◦φ)(s)
(

(g ◦ φ)′ (s)
)
ds by the Chain Rule,

=

∫ β

α

ωf(s)(f
′ (s)) ds

since f = g ◦ φ. �

Example 22 Integrate the 1-form

ω = x2ydx+ y2xdy + zdz,

along γ, the curve in R3, parametrised by

g (t) =

 cos t

sin t

t

 ,

for 0 ≤ t ≤ 4π. (So γ is part of a spiral.)

Solution Recall that if ω = ω1dx+ ω2dy + ω3dz, then

ωa = ω1(a) dx(a)+ω2(a) dy(a)+ω3(a) dz(a) = ω1(a) p1+ω2(a) p2+ω3(a) p3.

In the present case, this becomes ωg(t) = (cos2 t sin t) p1+
(
sin2 t cos t

)
p2+tp3.

Next

g′(t) =

 − sin t

cos t

1

 ,

so ωg(t)(g
′(t)) = − cos2 t sin2 t+ sin2 t cos2 t+ t = t.

Therefore ∫
γ

ω =

∫ 4π

0

tdt = 8π2.
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Now we get a form of the Fundamental Theorem of Calculus for exact

1-forms.

Theorem 23 Assume ω is exact, so ω = df for some function f of class

C1 on an open set U ⊆ Rn. Assume γ is a differentiable curve in U from x0

to x1. Then ∫
γ

ω =

∫
γ

df = f(x1)− f(x0) .

Note that this is independent of the choice of γ, it depends only on the end

points.

Proof Suppose that γ is parametrized by g : [a, b] → U so that g (a) = x0

and g (b) = x1. Recall the Chain Rule, in the special case R g→ Rn f→ R,

when (f ◦ g)′ (t) = dfg(t)
(
g′ (t)

)
. Then∫

γ

df =

∫ b

a

dfg(t)
(
g′(t)

)
dt by definition

=

∫ b

a

(f ◦ g)′ (t) dt by the Chain Rule

= (f ◦ g) (b)− (f ◦ g) (a) ,

by the Fundamental Theorem of Calculus which requires (f ◦ g)′ to be con-

tinuous. That f ′ is continuous follows since f is a function of class C1. And

g′ is continuous by the definition of differentiable curve. Continuing,∫
γ

df = f(g(b))− f(g(a)) = f(x1)− f(x0) .

�

Corollary 24 Assume that ω : U → Hom (Rn,R) is an exact 1-form on an

open set U ⊆ Rn and γ is a closed differentiable curve in U then
∫
γ
ω = 0.

Proof Immediate from Theorem since γ closed means that x0 = x1. �
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Remark This result provides another method for showing that a 1-form in

not exact.

γ closed and

∫
γ

ω 6= 0 =⇒ ω is not exact.

See the Problem Sheet for an application of this principle.
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6.3 Differential 2-forms

Definition 25 Hom (Rn × Rn, R) is the set of all maps from Rn ×Rn to R
which are linear in both variables (i.e. they are bilinear).

So if L ∈ Hom (Rn × Rn, R) then, for α, β ∈ R and x,y,w, z ∈ Rn,

L(αx + βy, z) = αL(x, z) + βL(y, z) ,

L(x, αw + βz) = αL(x,w) + βL(x, z) .

Definition 26 A differential form of degree 2, also known as a 2-form,

is a function ω : U ⊆ Rn → Hom (Rn × Rn, R) such that for all a ∈ U and

u,v ∈ Rn we have ωa (v,u) = −ωa (u,v).

See the Appendix for some motivation for this definition and in particular

the requirement that ωa is anti-symmetric, i.e. ωa (v,u) = −ωa (u,v) for

all u,v ∈ Rn. It rests on the idea that ωa (u,v) represents the area between

u and v and if they are swapped the area changes sign.

Note that being anti-symmetric means that ωa (u,u) = 0 for all u ∈ Rn.

Repeat the argument seen earlier: If L ∈ Hom (Rn × Rn, R) then, for

(u,v) ∈ Rn × Rn,

L(u,v) = L

(
n∑
i=1

uiei,
n∑
j=1

vjej

)
=

n∑
i=1

n∑
j=1

uivjL(ei, ej)

=
n∑
i=1

n∑
j=1

L(ei, ej) p
i(u) pj(u) . (11)

Let ω be a 2-form on an open set U ⊆ Rn and let a ∈ U , then ωa :

Rn × Rn → R. By (11) with L = ωa,

ωa (u,v) =
n∑

i.,j=1

ωa (ei, ej) p
i(u) pj(v)

=
n∑

i.,j=1
i 6=j

ωa (ei, ej) p
i(u) pj(v) since ωa (ei, ei) = 0,

=
∑

1≤i<j≤n

ωa (ei, ej)
(
pi(u) pj(v)− pj(u) pi(v)

)
, (12)
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by the assumption ωa (u,v) = −ωa (v,u) for a 2-form. Here

pi(u) pj(v)− pj(u) pi(v) = uivj − ujvi = det

(
ui vi

uj vj

)
.

Think of this as the area of the parallelogram between the projections of u

and v onto the i-j - th plane. This should be motivation for the following

definition.

Definition 27 For 1 ≤ i, j ≤ n define pi ∧ pj : Rn × Rn → R by

pi ∧ pj(u,v) = det

(
ui vi

uj vj

)
,

for all (u,v) ∈ Rn × Rn. We say pi ‘wedge’ pj.

These bilinear functions are anti-symmetric pi∧pj = −pj ∧pi from which

it follows that pi ∧ pi = 0.

Example Calculate p1 ∧ p2(v1,v2), p
1 ∧ p3(v1,v2) and p2 ∧ p3(v1,v2) for

v1 = (1, 2,−1)T and v2 = (−1, 0, 1)T .

Solution

p1 ∧ p2(v1,v2) = det

(
1 −1

2 0

)
= 2,

p1 ∧ p3(v1,v2) = det

(
1 −1

−1 1

)
= 0,

p2 ∧ p3(v1,v2) = det

(
2 0

−1 1

)
= 2.

�

Returning to (12) we can now write

ωa (u,v) =
∑

1≤i<j≤n

ωa (ei, ej) p
i ∧ pj(u,v) ,

for all (u,v) ∈ Rn × Rn. Thus

ωa =
∑

1≤i<j≤n

ωa (ei, ej) p
i ∧ pj, (13)

for all a ∈ U . Motivated by Definition 6 we have
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Definition 28 Let ω be a 2-form on an open set U ⊆ Rn. Define functions

ωi,j : U → R by ωi,j (a) = ωa (ei, ej) for 1 ≤ i, j ≤ n.

Just as in Definition 5 we defined dxi to be the constant 1-form such that

dxi(a) = pi for all a ∈ Rn, we define special constant 2-forms:

Definition 29 Write dxi∧dxj to be the constant 2-form on Rn such that for

all a ∈ Rn

dxi ∧ dxj (a) = pi ∧ pj.

With these two definitions (13) can be rewritten as

ωa =
∑

1≤i<j≤n

ωi,j (a) dxi ∧ dxj(a)

for all a ∈ U . Hence

ω =
∑

1≤i<j≤n

ωi,jdx
i ∧ dxj. (14)

Thus all 2-forms can be written as a linear combination of the
(
n
2

)
terms

dxi∧ dxj, 1≤ i< j≤n with coefficients ωi,j : U → R. It can be shown that

the dxi∧dxj, 1≤ i<j≤n are linearly independent (see Appendix), and hence

form a basis for 2-forms..

Example 30 The general 2-form on U ⊂ R3 has the form

ω1,2 dx ∧ dy + ω1,3 dx ∧ dz + ω2,3 dy ∧ dz (15)

where each ωi,j : U → R.

For a particular example.

Example 31 Let

α = xz dx ∧ dy + (x+ yz) dx ∧ dz + x2z dy ∧ dz

be a 2-form on R3. Evaluate αa(v1,v2) at the point a = (1,−1, 2)T with

v1 = (1, 2,−1)T and v2 = (−1, 0, 1)T :

17



Solution The function αa ∈ Hom (R3 × R3, R) is

αa = 2 p1 ∧ p2 − p1 ∧ p3 + 2 p2 ∧ p3.

Evaluated at (v1,v2) it is

αa (v1,v2) = 2

∣∣∣∣∣ 1 −1

2 0

∣∣∣∣∣−
∣∣∣∣∣ 1 −1

−1 1

∣∣∣∣∣+ 2

∣∣∣∣∣ 2 0

−1 1

∣∣∣∣∣ = 4− 0 + 4 = 8.

�
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6.4 Surface Integrals

Definition 32 Let S be a parameterized 2 dimensional surface in Rn, so

there exists a Fréchet differentiable g : D → Rn for some D ⊆ R2 for which

S = {g (x) : x ∈ D, Jg (x) of full rank} .

Let ω be a 2-form defined on an open set U ⊆ Rn containing S, i.e. S ⊆ U .

Then the integral of ω over S is defined to be∫
S

ω =

∫ ∫
D

ωg(s,t)

(
∂g (s, t)

∂s
,
∂g (s, t)

∂t

)
dsdt,

if it exists.

In attempting to understand this we know that at every point g (s, t)

on the surface, the directional derivatives v1 = d1g (s, t) and v2 = d2g (s, t)

are two, independent vectors in the tangent space. Then ωg(s,t) (v1,v2) is a

measure of the area of the parallelogram between v1 and v2 in the tangent

Space. This is then integrated over the surface.

In the definition the set D ⊆ R2 need not be open (and if not, we can

only require that g is Fréchet differentiable on the interior points of D). If

D is not open the surface may have a boundary as in the next example.

Example 33 Evaluate∫
S

(x+ z) dx ∧ dy + x2 dx ∧ dz + xy dy ∧ dz,

where S is the parametrized surface
 s

s+ t

st

 : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

 .

Solution In this case g(s, t) = (s, s+ t, st)T and ω =(x+z) dx∧dy+x2 dx∧
dz + xy dy ∧ dz. So

ωg(s,t) = (s+ st) p1 ∧ p2 + s2 p1 ∧ p3 + s(s+ t) p2 ∧ p3.
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Next d1g((s, t)T ) = (1, 1, t)T and d2g((s, t)T ) = (0, 1, s)T . Hence,

ωg(s,t)

(
∂g (s, t)

∂s
,
∂g (s, t)

∂t

)

=
(
(s+ st) p1 ∧ p2 + s2 p1 ∧ p3 + s(s+ t) p2 ∧ p3

)
 1

1

t

 ,

 0

1

s




=

(
(s+ st)

∣∣∣∣∣ 1 0

1 1

∣∣∣∣∣+ s2

∣∣∣∣∣ 1 0

t s

∣∣∣∣∣+ s(s+ t)

∣∣∣∣∣ 1 1

t s

∣∣∣∣∣
)

= s+ st+ s3 + s(s+ t)(s− t)

= s+ st+ s3 + s3 − st2.

Finally ∫
S

(x+ z) dx ∧ dy + x2 dx ∧ dz + xy dy ∧ dz

=

∫ 1

0

∫ 1

0

(s+ st+ s3 + s3 − st2) ds dt

=

∫ 1

0

[
s2

2
+
s2t

2
+

2s4

4
− s2t2

2

]s=1

s=0

dt

=

∫ 1

0

(
1

2
+
t

2
+

1

2
− t2

2

)
dt

=
1

2
+

1

4
+

1

2
− 1

6
=

13

12
.

�
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6.5 Products of 1-forms

Be aware that the definition of dxi∧ dxj above is of the object and not a

binary operation ∧. Nonetheless we can define the binary operation by

Definition 34 Given dxi and dxj, constant 1-forms on U ⊆ Rn, the wedge

product (or exterior product) is dxi∧ dxj given by Definition 29. Extend

this by linearity to the wedge product of general 1-forms.

The wedge product of two 1-forms is, by definition, a 2-form.

Example. Let α = x dx+z dy+xy dz, and β = y dx−z dy+x dz be 1-forms

on R3. Then

α ∧ β = (x dx+ z dy + xy dz) ∧ (y dx− z dy + x dz)

= xy dx ∧ dx− xz dx ∧ dy + x2 dx ∧ dz

+yz dy ∧ dx− z2 dy ∧ dy + xz dy ∧ dz

+xy2 dz ∧ dx− xyz dz ∧ dy + x2y dz ∧ dz

= −xz dx ∧ dy + x2 dx ∧ dz + yz dy ∧ dx

+xz dy ∧ dz + xy2 dz ∧ dx− xyz dz ∧ dy

since dx ∧ dx = dy ∧ dy = dz ∧ dz = 0. Then using dy ∧ dx = −dx ∧ dy etc.

we get

α ∧ β = (−xz − yz) dx ∧ dy + (x2 − xy2) dx ∧ dz + (xz + xyz) dy ∧ dz.

�
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6.6 Differentials of 1-forms.

For completeness,

Definition 35 A 0-form on U ⊆ Rn is a function f : U → R.

In this terminology, the differential of a 0-form f is

df =
n∑
i=1

∂f

∂xi
dxi, (16)

a 1-form. Perhaps we can give a definition of a differential of a 1-form and

it will be a 2-form.

Without motivation (for that see the Appendix) we give:

Definition 36 Suppose that

ω =
n∑
j=1

ωjdx
j

is a 1-form of class C1 on an open set U ⊆ Rn, where ωi : U → R. The

exterior differential dω is the 2-form on U given by

dω =
n∑
j=1

dωj ∧ dxj.

Example 37 Find the differential of the 1-form α = xyz dx+x2y dy+ (x−
yz) dz on R3.

Solution

dα = d (xyz) ∧ dx+ d
(
x2y
)
∧ dy + d (x− yz) ∧ dz

= (yz dx+ xz dy + xy dz) ∧ dx+ (2xy dx+ x2 dy) ∧ dy + (dx− z dy − y dz) ∧ dz

= xz dy ∧ dx+ xy dz ∧ dx+ 2xy dx ∧ dy + dx ∧ dz − z dy ∧ dz,

since dx ∧ dx = dy ∧ dy = dz ∧ dz = 0. Then using dy ∧ dx = −dx ∧ dy etc.

we get

dα = (−xz + 2xy) dx ∧ dy + (−xy + 1) dx ∧ dz − z dy ∧ dz.

�
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Proposition 38 If ω =
∑n

j=1 ωj dx
j is a 1-form of class C1 on an open set

U ⊂ Rn then

dω =
∑

1≤i<j≤n

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi∧ dxj.

Proof By definition

dω =
n∑
j=1

dωj ∧ dxj.

From (16)

dωj =
n∑
i=1

∂ωj
∂xi

dxi.

Thus,

dω =
n∑
j=1

(
n∑
i=1

∂ωj
∂xi

dxi

)
∧ dxj =

n∑
i=1

n∑
j=1

i 6=j

∂ωj
∂xi

dxi ∧ dxj, (17)

using dxi∧ dxi= 0. Continuing we collect together (i, j) and (j, i) terms, so

dω =
∑

1≤i<j≤n

(
∂ωj
∂xi

dxi ∧ dxj +
∂ωi
∂xj

dxj ∧ dxi
)

=
∑

1≤i<j≤n

(
∂ωj
∂xi
− ∂ωi
∂xj

)
dxi∧ dxj,

by the anti-symmetric property dxj ∧ dxi= −dxi∧ dxj. �

Corollary 39 A 1-form ω of class C1 is closed if and only if dω = 0.

Proof This is immediate from Definition 17 which states that ω is closed if

and only if
∂ωj
∂xi
− ∂ωi
∂xj

= 0,

for all 1 ≤ i < j ≤ n. �

Later we define forms of degree > 1. Then dω = 0 becomes the definition

of closed.
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Corollary 40 If f is a function of class C2 then d2f = 0.

Proof If f is of class C2 then df is an exact 1-form of class C1 which, by

Theorem 16, must therefore be closed. Then, by Corollary 39, d (df) = 0,

i.e. d2f = 0. �

These results say that if ω = df for some f then dω = 0. The converse,

if dω = 0 then ω = df for some f , need not be true. The conditions under

which it is true is the subject of Poincare’s Lemma mentioned earlier.

6.7 Stokes’ Theorem

Recall an earlier example where our surface had a boundary. In the next

important result an integral over the boundary is compared with an integral

over the surface. As an example let S be a surface in R3 with boundary ∂S.

Let ω be a 1-form defined on S. Then one can integrate the 1-form ω over

∂S. Alternatively you can differentiate ω and integrate the resulting 2-form

dω over the surface S. Stoke’s Theorem says that the results are the same!

The result holds in great generality but we have only time for this simple

version.

Suppose that g : [0, 1]× [0, 1]→ Rn is a function of class C2 parametrizing

S ⊂ Rn. Then the boundary of S, denoted ∂S, may be parametrized using

four differentiable curves:

gb : [0, 1]→ Rn given by gb(s) = g([s, 0]T ) with image B,
gt : [0, 1]→ Rn given by gt(s) = g([s, 1]T ) with image T ,
gl : [0, 1]→ Rn given by gl(t) = g([0, t]T ) with image L,
gr : [0, 1]→ Rn given by gr(t) = g([1, t]T ) with image R.

Then we can prove the following result.

Theorem 41 Stokes’ Theorem - special case If φ is a 1-form of class

C1 on U ⊆ Rn and S is a surface in U parametrized by a function of class

C2. Then ∫
S

dφ =

∫
∂S

φ =

∫
R
φ−

∫
L
φ−

∫
T
φ+

∫
B
φ.
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Though it might be lost in the notation, we are going around the square

[0, 1] × [0, 1] in a counter clockwise direction, from (0, 0) to (1, 0), using gb;

from (1, 0) to (1, 1) using gr; from (1, 1) to (0, 1) using gt (but in the reverse

direction) and from (0, 1) back to (0, 0) using gl (but again in the reverse

direction). You can see this reflected in the choice of names for the image

lines, B for bottom edge of the square, R for the right hand edge etc.

We now calculate the value of a 2-form at a point on a surface, calculated

on two tangent vectors to the surface.

Lemma 42 Let g : V ⊆ R2 → Rn be a C2-function. Let φ be a 1-form on

an open set U ⊆ Rn containing the image of g. Then, for s = (s, t)T ∈ V ,

∂

∂s
φg(s)

(
∂g

∂t
(s)

)
=

n∑
i=1

n∑
j=1

∂φi
∂xj

(g (s))
∂gj

∂s
(s)

∂gi

∂t
(s) (18)

+
n∑
i=1

φi (g (s))
∂2gi

∂s∂t
(s) .

Further, the 2-form dφ satisfies

dφg(s)

(
∂g

∂s
(s) ,

∂g

∂t
(s)

)
=

∂

∂s
φg(s)

(
∂g

∂t
(s)

)
− ∂

∂t
φg(s)

(
∂g

∂s
(s)

)
. (19)

Proof We saw within the proof of Proposition 38 that the differential of

φ =
∑n

i=1 φidx
i is

dφ =
n∑
i=1

n∑
j=1

∂φj
∂xi

dxi ∧ dxj,

So

dφg(s) =
n∑
i=1

n∑
j=1

∂φj
∂xi

(g(s)) pi∧ pj.

Thus

dφg(s)

(
∂g

∂s
(s) ,

∂g

∂t
(s)

)
=

n∑
i=1

n∑
j=1

∂φj
∂xi

(g (s))

(
∂gj

∂s
(s)

∂gi

∂t
(s)− ∂gj

∂t
(s)

∂gi

∂s
(s)

)
.

(20)
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Next we examine the RHS of (19). From

φ =
n∑
i=1

φidx
i,

we get

φg(s) =
n∑
i=1

φi (g (s)) pi.

Thus

φg(s)

(
∂g (s)

∂t

)
=

n∑
i=1

φi (g (s)) pi
(
∂g

∂t
(s)

)

=
n∑
i=1

φi (g (s))
∂gi

∂t
(s) .

Then, by the Product Rule for differentiation,

∂

∂s
φg(s)

(
∂g

∂t
(s)

)
=

n∑
i=1

∂

∂s
φi (g (s))

∂gi

∂t
(s) +

n∑
i=1

φi (g (s))
∂2gi

∂s∂t
(s) .

Use the Chain Rule inside the first sum to give

∂

∂s
φi (g (s)) =

n∑
j=1

∂φi
∂xj

(g (s))
∂gj

∂s
(s) .

Combine these last two lines to get (18) .

Repeat, interchanging s and t to get

∂

∂t
φg(s)

(
∂g

∂s
(s)

)
=

n∑
i=1

n∑
j=1

∂φi
∂xj

(g (s))
∂gj

∂t
(s)

∂gi

∂s
(s)

+
n∑
i=1

φi (g (s))
∂2gi

∂t∂s
(s) .

Subtract the two results. Since g is C2 a result in Chapter 6 is that

∂2gi

∂t∂s
(s) =

∂2gi

∂s∂t
(s) ,
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and so these terms cancel, leaving

∂

∂s
φg(s)

(
∂g

∂t
(s)

)
− ∂

∂t
φg(s)

(
∂g

∂s
(s)

)

=
n∑
i=1

n∑
j=1

(
∂φi
∂xj

(g (s))
∂gj

∂s
(s)

∂gi

∂t
(s)− ∂φi

∂xj
(g (s))

∂gj

∂t
(s)

∂gi

∂s
(s)

)

=
n∑
i=1

n∑
j=1

∂φi
∂xj

(g (s))

(
∂gj

∂s
(s)

∂gi

∂t
(s)− ∂gj

∂t
(s)

∂gi

∂s
(s)

)
.

Yet this has been seen previously in (20) and this equality gives the last

claim of the lemma. �

Proof of Stokes’ Theorem By definition∫
S

dφ =

∫ 1

0

∫ 1

0

dφg(s,t)

(
∂g

∂s
(s, t) ,

∂g

∂t
(s, t)

)
dsdt

=

∫ 1

0

∫ 1

0

(
∂

∂s
φg(s,t)

(
∂g

∂t
(s, t)

)
− ∂

∂t
φg(s,t)

(
∂g

∂s
(s, t)

))
dsdt(21)

by Lemma 42. Consider this as a difference of two iterated integrals. The

first∫ 1

0

(∫ 1

0

∂

∂s
φg(s,t)

(
∂g

∂t
(s, t)

)
ds

)
dt =

∫ 1

0

(
φg(1,t)

(
∂g

∂t
(1, t)

)
− φg(0,t)

(
∂g

∂t
(0, t)

))
dt

=

∫ 1

0

φgr(t)

(
∂gr
∂t

(t)

)
dt−

∫ 1

0

φgl(t)

(
∂gl
∂t

(t)

)
dt

=

∫
R
φ−

∫
L
φ,

by the definition of integration of a 1-form. Similarly, the second integral in

(21) is ∫ 1

0

(∫ 1

0

∂

∂t
φg(s,t)

(
∂g

∂s
(s, t)

)
dt

)
ds =

∫
T
φ−

∫
B
φ.

Hence ∫
S

dα =

(∫
R
φ−

∫
L
φ

)
−
(∫
T
φ−

∫
B
φ

)
,
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giving the required result. �

This is a special case of Stokes’ Theorem in that the surface is an image

of a square. We can allow more general surfaces. A usual form of Stokes’

Theorem might be

Theorem 43 Let S be a smooth surface in Rn, bounded by a closed curve

∂S. Assume that the surface is orientable, and that the boundary curve is

oriented so that the surface lies to the left of the curve (as you walk around

the boundary, standing ’up’ in the direction of the orientated normal to the

surface). Let φ be a 1-form of class C1 defined on a subset U ⊆ Rn containing

S. Then ∫
S

dφ =

∫
∂S

φ.

A ‘flat’ version of this was given in MATH10121, where S lies in R2

(specifically the x - y plane inside Rn).

Example In Question Sheet 9 the following questions are asked:

i. Integrate the 1 - form ω = (x+ y + z) dx+y2dy+xydz along the bound-

ary of the unit circle in the x - y plane, centre the origin, in the counter-

clockwise direction.

ii. Integrate the 2-form β = −dx ∧ dy + (y − 1) dx ∧ dz + xdy ∧ dz over

a. the upper half of the unit sphere, so x2 + y2 + z2 = 1 with z ≥ 0,

b. the region in the x - y plane x2 + y2 ≤ 1.

The connection between these questions is that the differential of ω in

part i. is the β in part ii. That is dω = β. Also the unit circle of part i. is

the boundary of the surfaces in parts ii. a. & ḃ. Thus Stoke’s Theorem says

that we should get the same answers for all three parts.
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6.8 Differential k-forms

Definition 44 For 1 ≤ i1, i2, . . . , ik ≤ n, we define functions on k-tuples of

vectors

pi1 ∧ pi2 ∧ · · · ∧ pik : (Rn)k → R

by

pi1 ∧ pi2 ∧ · · · ∧ pik(t1, . . . , tk) = det

t
i1
1 · · · ti1k
...

. . .
...

tik1 · · · tikk


for vectors ti ∈ Rn, 1 ≤ i ≤ k.

Examples on R4,

p1 ∧ p3 : (R4)
2 → R; and a particular example is

p1 ∧ p3


1 2

2 0

3 8

0 −4

 =

∣∣∣∣∣ 1 2

3 8

∣∣∣∣∣ = 8− 6 = 2.

p2 ∧ p1 ∧ p4 : (R4)
3 → R; and a particular example is

p2 ∧ p1 ∧ p4


1 3 1

2 −2 4

3 1 1

−1 0 1

 =

∣∣∣∣∣∣∣
2 −2 4

1 3 1

−1 0 1

∣∣∣∣∣∣∣ = 14 + 8 = 22.

p3 : R4 → R; and a particular example is

p3


1

2

3

4

 = 3.

Proposition 45 (a) If two terms in pi1 ∧· · ·∧pik are interchanged, then the

function changes sign, e.g. p4 ∧ p2 ∧ p1 = −p1 ∧ p2 ∧ p4.

(b) If two terms in pi1 ∧ · · · ∧ pik are equal, then the function is zero, e.g.

p1 ∧ p3 ∧ p1 = 0.
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Proof These results are immediate from the properties of determinants. �

Definition 46 A function f : (Rn)k → R is said to be multilinear if it

is linear in each component.

For example,

f(st1 + ut′1, t2, t3, ..., tk) = sf(t1, t2, t3, ..., tk) + uf(t′1, t2, t3, ..., tk)

is the statement that f is linear in the first component.

Definition 47 A function f : (Rn)k → R is said to be alternating if

f(t1, t2, t3, ..., tk) changes sign if two of the vectors t1, t2, t3, ..., tk are in-

terchanged,

For example f(t2, t1, t3) = −f(t1, t2, t3).

Proposition 48 The functions pi1 ∧ · · · ∧ pik : (Rn)k → R are multilinear

and alternating.

Proof This is immediate from the basic properties of determinants. �

Note that for just two terms we talked of pi ∧ pj being anti-symmetric

instead of alternating, but they mean the same thing.

Definition 49 The set of all alternating multilinear maps (Rn)k → R is

denoted Λk(Rn,R). Thus Λ1(Rn,R) = Hom(Rn,R).

By convention, Λ0(Rn,R) = R.

Theorem 50 The set of all alternating multilinear maps (Rn)k → R, Λk(Rn,R),

is a vector space with a basis given by

{ pi1 ∧ · · · ∧ pik | 1 ≤ i1 < i2 < · · · < ik ≤ n }.

Proof Not given. �
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Corollary 51 The dimension of the vector space Λk(Rn,R) is
(
n
k

)
. In par-

ticular, if k > n, then Λk(Rn,R) = 0.

Proof This follows from Theorem 50 since the dimension of a vector space

is given by the number of vectors in a basis. �

Definition 52 Given an open set U ⊂ Rn, a (differential) k-form on U

is a function

ω : U → Λk(Rn,R).

As for 1-forms (Definition 2) we usually write ωa in place of ω(a).

Definition 53 We write dxi1∧ · · · ∧ dxik : Rn → Λk(Rn,R) for the constant

k-form given by

dxi1∧ · · · ∧ dxik(x) = pi1 ∧ · · · ∧ pik ,

for all x ∈ Rn.

Proposition 54 (a) If two terms in dxi1∧ · · · ∧ dxik are interchanged, then

the function changes sign, e.g. dx4 ∧ dx2 ∧ dx1 = −dx1 ∧ dx2 ∧ dx4.

(b) If two terms in dxi1∧ · · · ∧ dxik are equal, then the function is zero,

e.g. dx1 ∧ dx3 ∧ dx1 = 0.

Proof This is immediate from Proposition 45. �

Remarks. (a) It is a consequence of Theorem 50 that each k-form ω : U →
Λk(Rn,R), U open in Rn, can be written

ω =
∑

1≤i1<···<ik≤n

ωi1,...,ik dx
i1∧ · · · ∧ dxik

for some functions ωi1,...,ik : U ⊆ Rn → R.

(b) We say that the k-form is of class Cq if all these component functions,

ωi1,...,ik , are of class Cq.

(c) By Corollary 51, for k > n, the only k-form on U ⊂ Rn is the zero form.
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Definition 55 The wedge product or exterior product of a k -form α

and an l -form β is a (k+l) -form α ∧ β. To define this we put

(dxi1∧ · · · ∧ dxik) ∧ (dxj1 ∧ · · · ∧ dxjl) = dxi1∧ · · · ∧ dxik∧ dxj1 ∧ · · · ∧ dxjl ,

and extend linearly.

Example If ω = xz dx ∧ dy + (sin y) dx ∧ dz + ex dy ∧ dz and α = x dx +

z dy + xy dz then

α ∧ ω = (xz dx ∧ dy + (sin y) dx ∧ dz + ex dy ∧ dz) ∧ (x dx+ z dy + xy dz)

= xzx dx ∧ dy ∧ dx+ xz2dx ∧ dy ∧ dy + x2yz dx ∧ dy ∧ dz

+ x(sin y) dx ∧ dz ∧ dx+ (sin y)z dx ∧ dz ∧ dy + xy(sin y) dx ∧ dz ∧ dz

+ xex dy ∧ dz ∧ dx+ exz dy ∧ dz ∧ dy + xexy dy ∧ dz ∧ dz,

having used only the linearity part of the definition. Now use the fact that

terms with repeated differentials are zero. So

α ∧ ω = x2yz dx ∧ dy ∧ dz + (sin y)z dx ∧ dz ∧ dy + xex dy ∧ dz ∧ dx

=
(
x2yz − z sin y + xex

)
dx ∧ dy ∧ dz,

having used the alternating properties of ∧. �

The motivation for the following definition is simply that it is what we

did when differentiating a 1-form.

Definition 56 Suppose that

ω =
∑

1≤i1<···<ik≤n

ωi1,...,ik dx
i1∧ · · · ∧ dxik

is a k-form on an open set U ⊆ Rn, where ωi1,...,ik : U → R. Then the

exterior differential dω is the (k + 1)-form on U given by

dω =
∑

1≤i1<···<ik≤n

dωi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik .
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Stress that the differential of a k-form is a (k+1) -form. The form ω has to

be of class C` with some ` ≥ 1 for the dωi1,...,ik to be defined. The differential

dω will be of class C`−1.

Example.

d
(
(x2 + y) dx ∧ dy + xyz dx ∧ dz + x2z dy ∧ dz

)
= d

(
x2 + y

)
∧ dx ∧ dy + d (xyz) ∧ dx ∧ dz + d

(
x2z
)
∧ dy ∧ dz

= (2xdx+ dy) ∧ dx ∧ dy + (yzdx+ xzdy + xydz) ∧ dx ∧ dz

+
(
2xzdx+ x2dz

)
∧ dy ∧ dz

= xzdy ∧ dx ∧ dz + 2xzdx ∧ dy ∧ dz

= −xzdx ∧ dy ∧ dz + 2xzdx ∧ dy ∧ dz

= xz dx ∧ dy ∧ dz.

�

Definition 57 (a) A k-form ω is exact when ω = dα for a (k−1)-form α.

(b) A k-form ω is closed when dω = 0.

In Corollary 40 it was shown that if f : U ⊆ Rn → R, i.e. a 0-form, was

C2 then d2f = 0. This is, in fact, true for forms of all orders.

Proposition 58 Given a k-form ω of class C2 then d2ω = d(dω) = 0.

Proof From the definition of the exterior differential

dω =
∑

1≤i1<···<ik≤n

dωi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik .

Look at just one term in the sum and write f = ωi1,...,ik , so the term is

df ∧ dxi1 ∧ · · · ∧ dxik =
n∑
i=1

∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik .
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Then d(dω) is a sum of

d
(
df ∧ dxi1 ∧ · · · ∧ dxik

)
=

n∑
i=1

d

(
∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik

)

=
n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik .

The point here is that the addition of the ∧dxi1 ∧ · · · ∧ dxik makes no

difference to the argument seen before. Pairing (i, j) and (j, i) pairs we get

this sum equals∑
1≤i<j≤n

(
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik = 0

since f = ωi1,...,ik is a C2 function. �

Hence, if ω = dα for some form α then dω = 0. In words:

Corollary 59 If a k-form of class C1 is exact then it is closed.

Remark. The converse, if dω = 0 then ω = dα for some form α, is only

partially true. It is true ‘locally’: given a closed k-form ω on an open set

U ⊆ Rn, any point x ∈ U has a neighbourhood on which there exists a

(k−1)-form α with ω = dα . It is also true if the forms defined on the

whole of Rn. The conditions under which the converse holds are the subject

of Poincaré’s Lemma.

6.9 Integration of a k-form over a manifold

Without defining the terms we will state a version of the general Stokes’

Theorem as an advert for the type of result you might find in MATH31061

Differentiable Manifolds.

Theorem 60 Let M ⊆ Rn be a compact orientable regular k-surface with

boundary ∂M of class C2 and let ω be a C1 (k−1) -form on an open neigh-

bourhood U of M . Then ∫
∂M

ω =

∫
M

dω.
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Appendix to Section 6

Motivation of definition of a 1-form and its integral.

If f : [a, b] → R is integrable then we (presumably) know the definition

of ∫ b

a

f(x) dx.

We can look upon this as the integral over the curve [a, b] within R. But a

curve is simply the image of a continuous map of an interval (which in this

case could be the identity map). Let φ be differentiable map, say from [0, 1]

to [a, b], with φ (0) = a and φ (1) = b. Then, by the well-known change of

variables, ∫ b

a

f(x) dx =

∫ 1

0

f(φ (t))φ′ (t) dt.

Let us attempt to generalise this to paths in Rn. A path γ in Rn will be the

image of some differentiable map g : [0, 1]→ Rn, so γ = Im g. Assume that

f is a scalar-valued function defined on the points of γ; perhaps f : U → R,

for some open set U ⊆ Rn with γ ⊆ U . What meaning could we give to∫ 1

0

f(g(t)) g′(t) dt ?

Without some definition of integrating vectors this has no meaning for

g′ (t) is the tangent vector to the curve γ at point g (t). Instead we introduce

a linear function ω from vectors to R and consider∫ 1

0

f(g(t))ω (g′(t)) dt.

Except this is not quite correct. The vector g′(t) is a vector with a point of

application, it may be that at different t1 and t2 the vectors g′(t1) and g′(t2)

have the same direction and magnitude but a different point of application

(g(t1) and g(t2) respectively) . Thus we want the possibility that, at g′(t1)

and g′(t2), ω can be a different function, in which case we assume ω also

depends on the point of application, written as ωg(t). Now ω is a function

from U such that for every a ∈ U we have a linear function ωa from vectors

to R. This has led us to a 1-form.
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Finally when you look at the definition of the integral of a 1-form you

find no mention of a function f . But if ω is a 1-form then fω is a 1-form for

any f : U → R. Thus we can ‘absorb’ the f into the 1-form and consider∫ 1

0

ωg(t)(g
′(t)) dt

to be the definition of the integral of ω over γ.

Projections are linearly independent.

Let pi : Rn → R, 1 ≤ i ≤ n be the projection functions on Rn. Then, by

definition, pi (ej) = δi,j. Assume there exist ci ∈ R :
∑n

i=1 cip
i = 0, the zero

function. Then, for each 1 ≤ j ≤ n, we have

0 = 0(ej) =
n∑
i=1

cip
i (ej) =

n∑
i=1

ciδi,j = cj.

Thus, for all 1 ≤ j ≤ n we have cj = 0. Hence the pj, 1 ≤ j ≤ n, are linearly

independent.

Second derivatives need not be equal

Example 61 Define

f(x) =
xy (x2 − y2)
x2 + y2

if x 6= 0 with f(0) = 0.

Then
∂2f

∂x∂y
(0) = −1 while

∂2f

∂y∂x
(0) = 1.

Verification Assume x 6= 0 and multiply up so (x2 + y2) f(x) = xy (x2 − y2).
Then

2yf(x) +
(
x2 + y2

) ∂f(x)

∂y
= x

(
x2 − y2

)
− 2xy2 = x3 − 3xy2.

Put y = 0 (which with x 6= 0 implies x 6= 0) to get

∂f(x)

∂y

∣∣∣∣
x=(x,0)T

= x. (22)
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If x = 0 go back to the definition,

∂f

∂y
(0) = lim

t→0

f
(

(0, t)T
)
− f (0)

t
= 0. (23)

Similarly,

∂f(x)

∂x

∣∣∣∣
x=(0,y)T

=

 −y if y 6= 0

0 if y = 0.
(24)

Then

∂2f

∂x∂y
(0) =

∂

∂x

∂f(0)

∂y
= lim

h→0

1

h

∂f
(

(h, 0)T
)

∂y
− ∂f

∂y
(0)

 = lim
h→0

h

h
= 1,

by (22) and (23) . Also,

∂2f

∂y∂x
(0) =

∂

∂y

∂f(0)

∂x
= lim

t→0

1

t

∂f
(

(0, t)T
)

∂x
− ∂f

∂x
(0)

 = lim
t→0

−t
t

= −1,

by (24). So we have an example of where the order of the derivatives is

important. �

Theorem 15

In the proof of Theorem 15 we have used the result that

d

ds
f(a + sej + tei) =

∂f

∂xj
(a + sej + tei) .

The derivative on the left hand side is the one known since before University,

the one on the right is the partial, i.e. directional, derivative defined in this

course.

Let y = a + tei and w = y + sejthen

d

ds
f(y + sej) = lim

h→0

f(y + (s+ h) ej)− f(y + sej)

h

= lim
h→0

f(w + hej)− f(w)

h
=

∂f

∂xj
(w) .
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2-forms in R2 and their integrals.

All 2-forms on R2 are of the form ω = fdx∧dy for some f : R2 → R. Let

g : R2 → R2 be Fréchet differentiable on D
′ ⊆ R2. Let D = g(D′). Then, by

definition of integration,∫
D

ω =

∫ ∫
D′

ωg(x,y)

(
∂g (x, y)

∂x
,
∂g (x, y)

∂y

)
dxdy

=

∫ ∫
D′

f(g (x, y)) p1 ∧ p2
((

g1x
g2x

)
,

(
g1y
g2y

))
dxdy

=

∫ ∫
D′

f(g(x)) |Jg(x)| dx. (25)

If we choose g to be the identity, so D = D′, we get∫
D

ω =

∫ ∫
D

f(u) du,

i.e. the definition for 2-forms reduces to the double integrals we already

know. But further, we can combine this reinterpretation of integration of a

2-form with (25) to get∫ ∫
D′

f(g(x)) |Jg(x)| dx =

∫
D

ω =

∫ ∫
D

f(u) du. (26)

This is the well-known formula for change of variables in an integral in R2.

We normally talk of |Jg(x)| being the Jacobian of g. This is why I have been

careful throughout the course, referring to Jg(x) as the Jacobian matrix.
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Motivation for the definition of a 2-form and its integral.

Let S ⊆ Rn be a surface given parametrically by a Fréchet differentiable

map g : D → Rn for some D ⊆ R2. So S = Im g and Jg(s, t) is of rank 2 for

all (s, t)T ∈ D.

In place of functions of the vector g′(t) which appears in the line integral

we might consider real valued functions of dg. The Fréchet derivative dg can

be considered as a linear map or, as Jg, a matrix. For this discussion think

of dg as the set of its two columns, the directional derivatives dsg and dtg.

For each p ∈ S, look at real valued functions ωp of pairs (v,w) of vectors v

and w with point of application p ∈ S with the hope that∫ ∫
D

ωg(s,t)(dsg, dtg) dsdt (27)

makes sense.

If (27) represents the integral over S it should not depend on the parametriza-

tion. So if h : D′ → Rn also represents S in that S = Im h, the integral∫ ∫
D′

ωh(u,v)(duh, dvh) dudv

should have the same value as (27). Assume there exists an invertible differ-

entiable function k : D′ → D such that h = g ◦ k. Since ωg(s,t)(dsg, dtg) is a

real valued function of (s, t)T ∈ R2 we can apply (25) to say∫ ∫
D

ωg(s,t) (dsg, dtg) dsdt =

∫ ∫
D′

ωg(k(u,v)) (dsg, dtg) |Jk(u)| dudv. (28)

By the Chain Rule

Jh(u) = Jg(k(u)) Jk(u) = Jg(s) Jk(u) = (dsg, dtg)

(
duk

1 dvk
1

duk
2 dvk

2

)
.

To cut down notation write this as

(duh, dvh) = (αdsg + βdtg, γdsg + δdtg) .
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Forgetting temporarily the subscript

ω(duh, dvh) = ω(αdsg + βdtg, γdsg + δdtg)

= αγω(dsg,dsg) + αδω(dsg, dtg) (29)

+βγω(dtg, dsg) + βδω(dtg, dtg) (30)

assuming ωp is linear in both arguments (bilinear). What further properties

should we demand of ω?

In some sense ωp(u,v) should represent the area between u and v. In

particular if u and v are parallel then ωp(u,v) = 0. If u and v are inter-

changed then ωp(u,v) should change sign, i.e. ωp(v,u) = −ωp(u,v). In

(29) this give

ω(duh, dvh) = (αδ − βγ)ω(dsg, dtg) = |J (k (u))|ω(dsg, dtg) ,

having recalled the definitions of α, β, ... Returning to (28) ,∫ ∫
D

ωg(s,t)(dsg, dtg) dsdt =

∫ ∫
D′

ωh(u,v)(dsg, dtg) |Jk (u)| dudv

=

∫ ∫
D′

ωh(u,v)(duh, dvh) dudv.

Thus under the properties of ω(u,v) = −ω(v,u) and linearity in both

variables we have that the integral over S does not depend on the parametriza-

tion.

The constant 2-forms dxi ∧ dxj, 1 ≤ i < j ≤ n are linearly
independent.

Proof Assume there exist ωi,j : U → R such that∑
1≤i<j≤n

ωi,jdx
i ∧ dxj = 0,

an equality of 2-forms. Then, for any a ∈ U ,∑
1≤i<j≤n

ωi,j (a) dxi ∧ dxj (a) =
∑

1≤i<j≤n

ωi,j (a) pi ∧ pj = 0,
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the final equality as functions (Rn)2 → R. Note now that, with 1 ≤ k < ` ≤
n,

pi ∧ pj ((ek, e`)) =

{
1 if (i, j) = (k, `)

0 otherwise.

Then

0 =
∑

1≤i<j≤n

ωi,j (a) pi ∧ pj ((ek, e`)) = ωk` (a) .

Thus ωk` (a) = 0 for any a ∈ U , hence ωk` = 0.

True for any 1 ≤ k < ` ≤ n implies the dxi∧dxj are linearly independent.

�

Motivation for Differential of a 1-form

Let ω : U → Hom (Rn,R) be a 1-form. Ideally a differential of ω at

p ∈ U would measure the ‘change’ in ωp as p varies. For a scalar-valued

function f of several variables we could measure its rate of change at a point

p in direction v by ∇f(p) • v. In the present case ωp is not a scalar-valued

function of p. It is, though, if evaluated on a vector.

If the differential is to be a 2-form assume we are given two vectors V1

and V2, written upper case so we think of them as constant vector fields on

Rn. Given p ∈ U consider ωp(V1) and ωp(V2) as functions of p, so scalar-

valued functions U → R. We look at the rate of change of ωp(V1) as p moves

in the V2 direction, and the rate of change of ωp(V2) as p moves in the V1

direction. That is, we take the gradients w.r.t p, ∇ωp(V1) and ∇ωp(V2) and

calculate ∇ωp(V1) • V2 and ∇ωp(V2) • V1. Finally, to get an anti-symmetric

form perhaps define the differential dωp(V1, V2) as

∇ωp(V2) • V1 −∇ωp(V1) • V2. (31)

Theorem 62 Let ω : U → Hom (Rn,R) be a 1-form. Let V1 and V2 be

constant vector fields on Rn. Given p ∈ U let

dωp(V1, V2) = ∇ωp(V2) • V1 −∇ωp(V1) • V2.

Then

dω =
n∑
i=1

dωi ∧ dxi.
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Proof Write ω =
∑n

i=1 ωidx
i where ωi : U → R are 0-forms, and assume

V1, V2 have coordinates vi1 and vi2 respectively. Then

ωp(V2) =
n∑
i=1

ωi(p) vi2 so ∇ωp(V2) • V1 =
n∑
i=1

n∑
j=1

∂ωi(p)

∂xj
vj1v

i
2.

Thus

∇ωp(V2) • V1 −∇ωp(V1) • V2 =
n∑
i=1

n∑
j=1

∂ωi(p)

∂xj
(
vj1v

i
2 − v

j
2v
i
1

)
.

But

vj1v
i
2 − v

j
2v
i
1 = pj(V1) p

i(V2)− pi(V1) pj(V2)

=
(
pj ∧ pi

)
(V1, V2)

= dxj ∧ dxi (a) (V1, V2) ,

for any a ∈ U . Choose a = p to get

∇ωp(V2) • V1 −∇ωp(V1) • V2 =
n∑
i=1

n∑
j=1

∂ωi(p)

∂xj
dxj ∧ dxi(p)(V1, V2) .

The form on the right hand side is

n∑
i=1

n∑
j=1

∂ωi
∂xj

dxj ∧ dxi =
n∑
i=1

(
n∑
j=1

∂ωi
∂xj

dxj

)
∧ dxi =

n∑
i=1

dωi ∧ dxi,

having used the linearity of the wedge product for the first equality, and the

derivative of a 0-form (see (16)). �
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Green’s Theorem

Theorem 63 Green’s Theorem Let C be a closed C1 curve in R2 orien-

tated counterclockwise and D be the interior of C. If P (x, y) and Q (x, y)

are both functions of class C1 then∫
C

Pdx+Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Proof The integrand Pdx + Qdy is an example of a 1-form on R2 (and all

1-forms are of this form). Then

d (Pdx+Qdy) = dP ∧ dx+ dQ ∧ dy

=

(
∂P

∂x
dx+

∂P

∂y
dy

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
∧ dy

=
∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

(This is, in fact, just a special case of Proposition 38.)

In the definition of integration over a surface∫
S

ω =

∫ ∫
D

ωg(s,t)

(
d1g (s, t) , d2g (s, t)

)
dsdt.

choose the identity map g(s, t) = (s, t)T ∈ R2. Then d1g (s, t) = (1, 0)T and

d2g (s, t) = (0, 1)T . With ω = (∂Q/∂x− ∂P/∂y) dx ∧ dy we get

ωg(s,t)

(
d1g (s, t) , d2g (s, t)

)
=

(
∂Q

∂x
(s, t)− ∂P

∂y
(s, t)

)
dx ∧ dy(s, t)

((
1

0

)
,

(
0

1

))
=

(
∂Q

∂x
(s, t)− ∂P

∂y
(s, t)

)
p1 ∧ p2

((
1

0

)
,

(
0

1

))

=
∂Q

∂x
(s, t)− ∂P

∂y
(s, t) .
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Hence result follows from Stokes’ Theorem. �

Though we have deduced Green’s Theorem from Stokes’ Theorem it is

important to have (and many exist) independent proofs of Green’s Theorem.

This is because many proofs of Stokes’ Theorem reduce it to an application

of Green’s Theorem.

Divergence of Vector Fields

Restrict to R3. Let f : U ⊆ R3 → R3 be a vector field. Let ω = f • n, where

n =

 dy ∧ dz
dz ∧ dx
dx ∧ dy

 .

Thus

ω = f 1dy ∧ dz + f 2dz ∧ dx+ f 3dx ∧ dy,

the 2 -form associated with f . Also

dω =
∂f 1

∂x
dx ∧ dy ∧ dz +

∂f 2

∂y
dy ∧ dz ∧ dx+

∂f 3

∂z
dz ∧ dx ∧ dy

=

(
∂f 1

∂x
+
∂f 2

∂y
+
∂f 3

∂z

)
dx ∧ dy ∧ dz.

Definition 64 For f , a vector field on an open subset U ⊆ R3, the diver-

gence of f is

divf =
∂f 1

∂x
+
∂f 2

∂y
+
∂f 3

∂z

Thus dω = (divf) dx ∧ dy ∧ dz.

In the general form of Stokes’ Theorem let S ⊆ R3 be a three dimensional

subset with a boundary ∂S, a two dimensional surface. Then∫
∂S

f • n =

∫
S

d (f • n) =

∫
S

(divf) dxdydz,

i.e. ∫
∂S

f • n =

∫
S

(divf) dxdydz.

This is known as the Divergence Theorem.
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